首页|一种带式输送机故障诊断方法研究

一种带式输送机故障诊断方法研究

扫码查看
针对带式输送机故障诊断信息采集存在模糊、不全面、精度低等问题,提出一种多信息融合的带式输送机故障诊断方法。其采用声音信号和红外图像两种手段进行信息采集,利用BP神经网络对数据进行处理,并融合鲸鱼算法提高故障诊断正确率;取带式输送机特征向量500组,训练数据为300组,测试数据为150组,最大迭代数为100,维数为3的数据样本分别对声音信号故障诊断和红外图像故障诊断进行实验,结果表明,鲸鱼算法优化的BP神经网络误差最小,准确率最高,满足带式输送机故障诊断需求。
Research on a Fault Diagnosis Method of a Belt Conveyor
Aiming at the problems of fuzzy,incomplete and low precision of belt conveyor fault diagnosis information collection,a multi-information fusion belt conveyor fault diagnosis method is proposed.Adopt two means of sound signal and infrared image for information acquisition,use BP neural network for data processing,and fuse the whale algorithm to improve the correct rate of fault diagnosis;take 500 groups of belt conveyor feature vectors,300 groups of training data,150 groups of test data,the maximum number of iterations is 100,and the dimensionality is 3 data samples were respectively used for sound signal fault diagnosis and infrared image Fault diagnosis is experimented,and the results show that the BP neural network optimised by the whale algorithm has the smallest error and the highest accuracy rate,which meets the needs of belt conveyor fault diagnosis.

belt conveyorfault diagnosissoundinfraredBP neural networkwhale algorithm

纪文轩

展开 >

晋能控股集团有限公司马脊梁矿,山西 大同 037003

带式输送机 故障诊断 声音 红外 BP神经网络 鲸鱼算法

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(4)
  • 4