首页|采煤机滚动轴承故障预测模型设计及试验

采煤机滚动轴承故障预测模型设计及试验

扫码查看
井下采煤机结构复杂、工况环境差,容易出现各类故障,且处置难度较大。针对MG620/1660-WD型电牵引采煤机滚动轴承故障诊断需求,结合EEMD振动信号预处理及降噪原理,设计了基于深度学习的故障预测模型,并实施了数据训练及模型测试。测试结果表明,预测模型的故障甄别准确率达到96。8%,故障预测具有较高的可靠性,实现了预期的研究目的。
Coal Mining Machine Rolling Bearing Failure Prediction Model Design and Test
Underground coal mining machine has complex structure and poor working environment,which is prone to various kinds of faults and difficult to dispose of.To meet the demand of rolling bearing fault diagnosis of MG620/1660-WD electric traction coal mining machine,combined with the principle of EEMD vibration signal pre-processing and noise reduction,a fault prediction model based on deep learning is designed,and data training and model testing are implemented,and the test results show that the fault screening accuracy of the prediction model reaches 96.8%,and the fault prediction is highly reliable,which achieves the expected research purpose.research purpose.

coal mining machine rolling bearingfault diagnosisfault prediction modeldeep learningsignal preprocessing

张树臣

展开 >

汾西矿业集团曙光煤矿,山西 孝义 032300

采煤机 滚动轴承 故障诊断 故障预测模型 深度学习 信号预处理

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(4)
  • 2