首页|刀具剩余使用寿命多传感器融合预测及试验验证

刀具剩余使用寿命多传感器融合预测及试验验证

扫码查看
为了提高刀具剩余使用寿命预测的预测能力,设计了一种面向多传感器融合的剩余使用寿命预测方法。借助多传感器数据实现模型的联合动态更新,融合多传感器数据,对剩余使用寿命作出准确预测,并铣床刀具磨损试验数据的实际案例分析。研究结果表明:以敏感测点数据为基础在线更新模型状态和参数信息,从而获取到机械装备剩余使用寿命实时预测结果。经过对六组刀具的寿命预测结果曲线进行分析后发现,与传感器融合预测方法的预测结果具有很高的优势,可见提出方法预测结果是准确度较高的。
Multi-Sensor Fusion Prediction and Test Verification of Tool Remaining Service Life
In order to improve the predictive ability of tool residual service life prediction,a multi-sensor fusion based residual service life prediction method was designed.With the help of multi-sensor data,the model can be dynamically updated jointly,and the remaining service life can be accurately predicted by fusing multi-sensor data.The results show that the model state and parameter information can be updated online based on the data of sensitive measuring points,so as to obtain the real-time prediction results of the remaining service life of mechanical equipment.After analyzing the life prediction curves of six groups of tools,it is found that the prediction results of fusion prediction method with sensor have high advantages,which shows that the prediction results of the proposed method are of high accuracy.

mechanical equipmentremaining service lifesensor fusiontoolforecast

王美姣、马澄宇、薛誓颖、任艳艳

展开 >

河南职业技术学院智能制造学院,河南 郑州 450046

机械装备 剩余使用寿命 传感器融合 刀具 预测

2023年河南省科技攻关项目2023年度河南职业技术学院科研项目

2321023210612023ZK20

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(10)