首页|基于样本熵的煤矿采煤机振动信息分解及故障诊断研究

基于样本熵的煤矿采煤机振动信息分解及故障诊断研究

扫码查看
为了对采煤机的故障进行诊断,从该机械中的截割滚筒滚动轴承入手。首先设计了基于样本熵的振动信号分解方法,其结合了经验模态分解和时变滤波。其次,构建了分量信号的筛选准则,并对不同准则的计算方式进行了说明。结果显示,测试值和真实值之间的内圈误差分别为0。05Hz和0。17Hz,滚动体误差分别为1。89Hz和2。11Hz。研究所设计的分解方法能够对故障特征信息进行更完整的保留,诊断方法在故障频率识别上的误差较小,能够为滚动轴承的故障诊断提供技术上的支持。
Research on Vibration Information Decomposition and Fault Diagnosis of Coal Mining Machine Based on Sample Entropy
In order to diagnose the faults of coal mining machine,we start from the rolling bearings of the cutting drum in this machine.Firstly,a vibration signal decomposition method based on sample entropy is designed,which combines empirical modal decomposition and time-varying filtering.Secondly,the filtering criterion of the component signals is constructed and the calculation of different criteria is explained.The results show that the errors between the test values and the real values are 0.0 5 Hz and 0.17 Hz for the inner ring and 1.89 Hz and 2.11 Hz for the rolling element,respectively.The decomposition method designed by the study is able to provide a more complete retention of the fault characteristic information,and the diagnostic method has a smaller error in the identification of the fault frequency,which is able to provide technical support for the diagnosis of the faults of rolling bearings.

sample entropyvibration signalcoal mining machinedecompositionfault diagnosis

静国栋

展开 >

内蒙古平庄煤业(集团)有限责任公司元宝山露天煤矿,内蒙古 赤峰 024076

样本熵 振动信号 采煤机 分解 故障诊断

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(12)