首页|基于信号序列差分的EMD及其在轴承故障诊断中的应用

基于信号序列差分的EMD及其在轴承故障诊断中的应用

扫码查看
随着现代数字信号处理技术的发展,在工程实践中实现了轴承在线状态监控和故障早期预警,预防了轴承故障突然发生。对信号序列进行差分运算降低原始信号序列不平稳性和随机性,利用经验模态分解对信号序列进行处理,提取出各阶频率较为单一的本征模态函数,再通过希尔伯特变换提取到轴承故障特征,从而验证了该方法的有效性。
EMD Based on Signal Sequence Difference and Its Application in Bearing Fault Diagnosis
With the development of modern digital signal processing technology,on-line condition monitoring and fault early warning of mechanical equipment are realized in engineering practice which prevent the sudden failure of bearing.The article performs differential operation on the signal sequence to reduce the instability and randomness of the original signal sequence,and the empirical mode decomposition is used to decompose the signal sequence to extract the intrinsic mode functions with relatively single frequencies of each order,and then the bearing fault characteristics is extracted by Hilbert transform which verify the effectiveness of this method.

empirical modal decompositiondifferentialsignal sequenceHilbert transformbearing fault diagnosis

李宁

展开 >

中国铁路青藏集团有限公司机务部,青海 西宁 810000

经验模态分解 差分 信号序列 希尔伯特变换 轴承故障诊断

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(12)