首页|基于VMD和CNN方法的电机传动系统故障诊断研究

基于VMD和CNN方法的电机传动系统故障诊断研究

扫码查看
为了进一步提高电机传动系统故障诊断精度,设计了一种同时运用VMD和CNN方法用于电机传动系统故障诊断。通过正交实验法对CNN参数优化,并将分解后固有模态分量输入CNN模型中训练。研究结果表明:随着迭代次数增加至85次时,获得了稳定的适应度函数。表明该优化算法具备显著优越性,能够促进诊断精度提升。训练样本诊断成功率为98。6%,相对测试样本95。6%达到了更高准确率,说明CNN模型具备更优异的故障识别和诊断性能。该研究有助于提高发电设备的工作稳定性,也可拓宽到其它的机械传动领域。
Fault Diagnosis of Drill Pipe for High Coalbed Methane Extraction Based on CNN and VMD
In order to further improve the fault diagnosis accuracy of the motor drive system,a method using VMD and CNN for the fault diagnosis of the motor drive system was designed.The orthogonal experiment method is used to optimize the CNN parameters,and the decomposed natural modal components are input into the CNN model for training.The results show that a stable fitness function is obtained when the number of iterations increases to 85.It shows that the optimization algorithm has obvious advantages and can promote the improvement of diagnostic accuracy.The diagnosis success rate of the training sample is 98.6%,which is higher than that of the test sample 95.6%,indicating that the CNN model has better fault identification and diagnosis performance.This research is helpful to improve the working stability of power generation equipment,and can also be extended to other mechanical transmission fields.

motor drive systemfault diagnosislearning algorithmfitness

孙长胜、曹浩男

展开 >

许昌职业技术学院建筑工程学院,河南 许昌 461000

电机传动系统 故障诊断 学习算法 适应度

2024

机械管理开发
山西省机械工程学会

机械管理开发

影响因子:0.273
ISSN:1003-773X
年,卷(期):2024.39(12)