现代制造工程2024,Issue(1) :124-129.DOI:10.16731/j.cnki.1671-3133.2024.01.018

基于双路并行卷积信息融合的刀具磨损识别

Tool wear identification based on dual-channel convolutional information fusion

赵东旭 袁志响 易思广 潘加港 张云鹏 卢文壮
现代制造工程2024,Issue(1) :124-129.DOI:10.16731/j.cnki.1671-3133.2024.01.018

基于双路并行卷积信息融合的刀具磨损识别

Tool wear identification based on dual-channel convolutional information fusion

赵东旭 1袁志响 1易思广 1潘加港 1张云鹏 1卢文壮1
扫码查看

作者信息

  • 1. 南京航空航天大学机电学院,南京 210016
  • 折叠

摘要

针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法.首先采集铣削加工过程中声音信号和工件表面图像数据,然后使用双路并行卷积神经网络对声音信号和工件表面图像进行特征提取及融合,最后进行刀具磨损识别.结果表明,和单一信号识别结果相比,采用信息融合方法能获取更全面的刀具磨损特征信息,有利于增强刀具磨损识别效果,且刀具磨损识别准确率和F1-score均在95%以上,能有效识别刀具磨损状况.

Abstract

During the machining process,it is difficult to obtain comprehensive information about tool wear characteristics using a single signal due to the complex and varied machining environment.A method is proposed that utilizes a combination of sound signals and surface image signals of workpieces through deep learning networks to recognize tool wear states.Initially,sound sig-nals and surface image data from milling processes are synchronously collected,followed by the establishment of a dual-channel parallel convolutional neural network for feature extraction and fusion of one-dimensional sound signals and two-dimensional work-piece surface images.Finally,tool wear recognition is conducted.The results indicate that the use of information fusion methods can obtain more comprehensive tool wear characteristic information compared to single information recognition results,which is advantageous in improving the tool wear recognition effect.Moreover,the tool wear recognition accuracy and F1-score are above 95%,allowing for effective recognition of the tool wear condition.

关键词

刀具磨损/磨损识别/信息融合/双路卷积神经网络

Key words

tool wear/wear recognition/information fusion/dual-channel convolutional neural network

引用本文复制引用

基金项目

国家自然科学基金项目(51975287)

南京航空航天大学科研与实践创新计划项目(xcxjh20220502)

出版年

2024
现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
参考文献量4
段落导航相关论文