首页|VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断

VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断

扫码查看
针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断.首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断.将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了 2.5%,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16%,较PSO-SVM、FOA-SVM分别提高了 2.5%、3.61%.金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障.
VMD combined with wavelet packet information entropy and GJO-SVM for motor bearing fault diagnosis
To address the problem of low diagnostic accuracy due to the difficulty in extracting fault features of rolling bearings in electric motors,a feature extraction method based on Variational Modal Decomposition(VMD)combined with Wavelet Packet In-formation Entropy(WPIE)is proposed.A Support Vector Machine(SVM)optimized by Golden Jackal Optimization(GJO)is used for the fault diagnosis of motor bearings.Firstly,the collected signal is decomposed by VMD and the optimal eigenmode component Intrinsic Mode Function(IMF)is filtered based on the local minimal envelope entropy;secondly,the wavelet packet is decomposed again and the information entropy is extracted as the feature vector matrix;finally,the penalty and kernel parameters in the support vector machine are optimally selected by the GJO algorithm,and the GJO-SVM fault diagnosis model is estab-lished,the feature vector matrix is input into Golden Jackal Optimizes algorithm the Support Vector Machine(GJO-SVM)for fault diagnosis.The VMD combined with wavelet packet information entropy feature extraction is compared with VMD combined with approximate entropy feature extraction,and the experimental results show that the accuracy of VMD combined with wavelet information entropy feature extraction is improved by 2.5%,and its feature extraction is more superior.The experimental results show that the average accuracy of GJO-SVM reaches 99.16%,which is 2.5%and 3.61%higher than that of PSO-SVM and FOA-SVM respectively.GJO-SVM can extract and diagnose bearing faults more effectively.

Variational Modal Decomposition(VMD)Wavelet Packet Information Entropy(WPIE)Golden Jackal Optimization(GJO)algorithmSupport Vector Machine(SVM)bearing fault diagnosis

纪京生、周莉、马向阳

展开 >

安徽理工大学电气与信息工程学院,淮南 232001

变分模态分解 小波包信息熵 金豺优化算法 支持向量机 轴承故障诊断

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(2)
  • 1
  • 9