首页|窄间隙GMAW咬边缺陷的电弧声信号特征分析与识别

窄间隙GMAW咬边缺陷的电弧声信号特征分析与识别

扫码查看
针对窄间隙熔化极气体保护焊(Gas Metal Arc Welding,GM AW)焊道侧壁处局部咬边缺陷检测困难的问题,提出了一种基于电弧声信号特征提取与处理的咬边缺陷在线检测方法。通过分析正常、临界咬边和咬边这3种焊接状态的电弧形态和电弧声信号特征,证实坡口侧壁引起的电弧形态变化是影响电弧声信号变化的重要因素。在此基础上采用小波包时频分析,同时引入特征类间标准差作为评价指标,确定了能有效识别3种焊接状态的敏感特征。采用Sigmoid支持向量机和五折交叉验证建立预测模型,实验结果表明该模型能较好地实现3种焊接状态的预测分类,识别准确率达到96。0%。
Analysis and identification of arc acoustic signal characteristics of occlusion defects in narrow gap GMAW
Aiming at the problem of difficulty in detecting local occlusion defects at the side wall of narrow gap GMAW,an online detection method for occlusion defects based on arc acoustic signal feature extraction and processing was proposed.By analyzing the arc morphology and arc acoustic signal characteristics of normal,critical occlusion and occlusion,it was confirmed that the arc morphology change caused by the side wall of the groove was an important factor affecting the change of arc acoustic signal.On this basis,the time-frequency analysis of wavelet packets was used,and the standard deviation between feature classes was intro-duced as an evaluation index to determine the sensitive features that can effectively identify the three welding states.Sigmoid sup-port vector machine and five-fold cross-validation were used to establish a prediction model,and the experimental results show that the model can better realize the prediction classification of three welding states,and the recognition accuracy reaches 96.0%.

narrow gap GMAWarc acoustic signalocclusion defectstime-frequency analysis

许建龙、薛瑞雷、吴立斌、李晓娟、刘宏胜

展开 >

新疆大学智能制造现代产业学院,乌鲁木齐 830017

四川石油天然气建设工程有限责任公司,成都 610225

窄间隙熔化极气体保护焊 电弧声信号 咬边缺陷 时频分析

新疆维吾尔自治区自然科学基金项目

2022D01C391

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(2)
  • 3