首页|基于多模态中间表示的端到端自动驾驶模型

基于多模态中间表示的端到端自动驾驶模型

扫码查看
对驾驶环境的准确理解是实现自动驾驶的先决条件之一。为提高自动驾驶车辆的场景理解能力,提出了一种基于语义分割、水平视差和角度编码的多模态中间表示的端到端自动驾驶模型。该端到端自动驾驶模型利用深度学习技术构建感知-规划网络。感知网络以RGB和深度图为输入生成多模态中间表示,实现道路环境及周围障碍物的空间分布描述;规划网络使用多模态中间表示进行道路环境特征提取和航路点预测。基于CARLA仿真平台进行模型的训练和性能测试,结果表明:该端到端自动驾驶模型能够实现对城市道路环境的场景理解,有效地减少了碰撞;相较于单模态中间表示的基线模型,其驾驶性能指标提升了 31。47%。
End-to-end autonomous driving model based on multi-modal intermediate representations
An accurate understanding of the driving environment is one of the prerequisites for autonomous driving.In order to im-prove the scene understanding ability of autonomous driving vehicles,an end-to-end autonomous driving model based on semantic segmentation,horizontal disparity,and angle coding multi-modal intermediate representations was proposed.The end-to-end auton-omous driving model used deep learning technology to build perception-planning network.The perception network generated multi-modal intermediate representations with RGB and depth images as inputs to realize the spatial distribution description of road en-vironment and surrounding obstacles.The planning network used multi-modal intermediate representations to extract road environ-ment features and predict waypoints.Model training and performance testing were conducte based on the CARLA simulation plat-form.The results showed that the end-to-end autonomous driving model can realize the scene understanding of urban road environ-ment and effectively reduce collisions.Compared with the baseline model based on the single modal intermediate representation,its driving performance index is 31.47%better than the baseline model.

autonomous drivingscene understandingimitation learningtrajectory planning

孔慧芳、刘润武、胡杰

展开 >

合肥工业大学电气与自动化工程学院,合肥 230009

自动驾驶 场景理解 模仿学习 轨迹规划

安徽省重点研发计划项目

202104a05020035

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(3)
  • 27