首页|改进YOLOv7算法的排水管道缺陷检测与几何表征

改进YOLOv7算法的排水管道缺陷检测与几何表征

扫码查看
定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图均衡化图像增强技术,改善图像的对比度和细节,以提高检测网络对排水管道缺陷的捕获能力;其次,基于设计的Drop-CA和MC模块改进YOLOv7算法,使网络获得浅层缺陷的语义信息并降低误检率,提高模型的分类和定位能力;最后,针对裂缝和断裂2种严重缺陷,设计了一种定量描述该缺陷的几何特征方法来评估缺陷的大小。实验结果表明,改进的网络模型最终平均精度达到93。3%,检测速度达到42。9 f/s。该方法有效提升排水管道缺陷检测和分类精度,且可以有效表征缺陷的几何特征。
Improved defect detection and geometric characterization of drainage pipes in YOLOv7 algorithm
Regular inspection of drainage pipes can find serious defects in time,which is of great significance to ensure the healthy operation of the drainage system and the safety of the urban environment.Aiming at the difficulty of detecting low illumination and low resolution of lower drainage pipes,an improved drainage pipeline defect detection and geometric characterization method of YOLOv7 algorithm is proposed.Firstly,the Contrast-Limited Adaptive Histogram Equalization(CLAHE)image enhancement technique is used to improve the contrast and detail of the image,so as to improve the detection network's ability to capture drain-age pipe defects.Secondly,based on the design of Drop-CA and MC modules,the YOLOv7 algorithm is improved,so that the net-work can obtain the semantic information of shallow defects,reduce the false detection rate,and improve the classification and lo-calization capabilities of the model.Finally,for the two serious defects of crack and fracture,a method is designed to quantitatively describe the geometric characteristics of the defect to evaluate the size of the defect.Experimental results show that the final aver-age accuracy of the improved network model reaches 93.3%,and the detection speed reaches 42.9 f/s.This method effectively improves the accuracy of defect detection and classification of drainage pipelines,and can effectively characterize the geometric characteristics of defects.

image enhancementdefect detectionYOLOv7 algorithmDrop-CAgeometric features

曾飞、李斌、周健、樊江峰

展开 >

武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081

武汉科技大学机械自动化学院,武汉 430081

图像增强 缺陷检测 改进的YOLOv7算法 Drop-CA 几何特征

国家自然科学基金青年基金项目交通教育研究会2021年教育研究课题项目2020年湖北高校省级教学研究项目2019年武汉科技大学教学研究项目

61703215JTYB20-7120203412019Z014

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(3)
  • 15