首页|基于改进教与学优化算法的废旧智能手机拆解深度优化研究

基于改进教与学优化算法的废旧智能手机拆解深度优化研究

扫码查看
针对现有拆解深度决策方法无法客观准确地得到废旧智能手机最优拆解深度的问题,提出了一种基于改进教与学优化(Teaching-Learning-Based Optimization,TLBO)算法的废旧智能手机拆解深度优化方法。构建了拆解利润模型、拆解时间模型和拆解能耗模型并确立拆解深度优化目标,利用改进教与学优化算法求解得到一组最优的拆解深度解集。以小米5手机的拆解过程研究为例,验证了提出的拆解深度优化方法的有效性;结果表明提出的拆解深度优化方法的最优解搜寻能力和收敛速度均得到增强。
Research on disassembly depth optimization for waste smartphones based on improved TLBO algorithm
Aiming at the problem that the existing disassembly depth decision method cannot objectively and accurately obtain the optimal disassembly depth of waste smartphones,a disassembly depth optimization method for waste smartphones based on im-proved Teaching-Learning-Based Optimization(TLBO)algorithm was proposed.The disassembly profit model,disassembly time model and disassembly energy consumption model were established and the disassembly depth optimization target was determined,an optimal disassembly depth solution set was obtained by the improved TLBO algorithm.The disassembly process of Xiaomi 5 was selected as an example to verify the effectiveness of the proposed method.The result show that the optimal solution search ability and the convergence speed of the proposed method are enhanced.

disassembly depthdisassembly model of waste smartphonesCircle chaotic mapTLBO algorithmmulti-objective op-timization

陈泽鹏、李林、楚晓静、尹凤福

展开 >

青岛科技大学机电工程学院,青岛 266061

拆解深度 废旧智能手机拆解模型 Circle混沌映射 教与学优化算法 多目标优化

国家重点研发计划子课题项目

2020YFB1713001

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(3)
  • 18