首页|基于海鸥优化算法的分布式柔性车间调度研究

基于海鸥优化算法的分布式柔性车间调度研究

扫码查看
基于分布式柔性作业车间问题特点,构建了以最小化最大完工时间、工厂总能耗和设备总负载为目标函数的数学模型,并对3个目标函数采用线性加权和法进行归一化.在传统的海鸥优化算法基础上,改进了自适应附加变量更新策略,提高算法后期的局部寻优能力和收敛精度.融合麻雀算法中的飞行机制,扩大个体局部寻优范围,进一步提高寻优精度.引入针对关键工厂的变邻域搜索算法,拓展了邻域搜索范围,增强了算法的局部搜索能力.通过标准算例和工厂实际算例的验证,证明了改进海鸥优化算法(Improve Seagull Optimization Algorithm,ISO A)在求解多目标分布式柔性作业车间问题上的有效性和可行性.
Research on distributed and flexible job-shop scheduling based on seagull optimization algorithm
Based on the characteristics of distributed flexible job-shop problems,a mathematical model was constructed with the objective functions of minimizing completion time,factory energy consumption,and equipment load,and the three objectives were normalized using linear weighted sum method.On the basis of the traditional Seagull Optimization Algorithm(SOA),an adaptive additional variable update strategy has been improved to improve the local optimization ability and convergence accuracy of the al-gorithm in the later stage.The flight mechanism in the sparrow algorithm was integrated to expand the local optimization range of individuals,and further improve the optimization accuracy.Introducing a variable neighborhood search algorithm for key factories has expanded the neighborhood search range and enhanced the local search ability of the Seagull algorithm.The effectiveness and feasibility of ISOA in solving multi-objective distributed and flexible job-shop problems were verified through standard and actual factory examples.

distributed and flexible job-shopmulti-objective optimizationvariable neighborhood searchadaptive additional variable

孙鸿羽、吉卫喜、李威、刘凯

展开 >

江南大学机械工程学院,无锡 214122

江苏省食品制造装备重点实验室,无锡 214122

分布式柔性作业车间 多目标优化 变邻域搜索 自适应附加变量

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(4)
  • 19