首页|车辆半主动悬架模糊变权重因子自适应控制研究

车辆半主动悬架模糊变权重因子自适应控制研究

扫码查看
针对传统悬架控制策略中权重因子固定不可变的问题,提出了车辆半主动悬架模糊变权重因子自适应控制系统,该控制系统由3个模糊控制回路组成,3个模糊控制器分别控制影响车辆动态性能的3个悬架响应参数.α模糊控制器、模糊控制器和γ模糊控制器根据路面条件分别控制簧载质量加速度控制函数权重因子、动载荷控制函数权重因子和动挠度控制函数权重因子,分别建立了各模糊控制器的控制规则和输入输出变量的函数关系.车辆半主动悬架模糊变权重因子自适应控制系统的控制原理是在以A级、B级路面为代表的高等级路面上增大簧载质量加速度控制权重,以提高车辆的舒适性;在以C级路面为代表的中等级路面上增大动挠度控制权重,以提高车辆综合性能;在以D级路面为代表的低等级路面上增大动载荷控制权重,以提高车辆安全性.凸块路面激励仿真结果表明,相比于被动控制和定权重因子控制,模糊变权重因子自适应控制的簧载质量加速度峰值分别降低了 40.2%和28.6%,动挠度峰值分别降低了 41.5%和21.0%,动载荷峰值分别降低了 40.1%和31.8%,各响应的衰减速度几乎没有减小,衰减时间基本保持一致,在衰减过程中并没有明显的振荡现象.随机路面激励仿真结果表明,相对于被动控制和定权重因子控制,模糊变权重因子自适应控制的簧载质量加速度均方根值分别降低了 48.8%和23.5%,动挠度均方根值分别降低了 23.6%和13.4%,动载荷均方根值分别降低了 11.9%和9.7%,悬架性能得到了大幅改善.在低等级路面激励输入时,安全性指标改善量较大;在高等级路面激励输入时,舒适性指标改善量较大;在中等级路面激励输入时,综合性指标改善量较大,仿真结果证明了所提控制系统的有效性和正确性.
Research on fuzzy variable weight factor adaptive control of vehicle semi-active suspension
A fuzzy variable weight factor adaptive control system for vehicle semi-active suspension was proposed to address the is-sue of fixed and immutable weight factors in traditional suspension control strategies.The control system consisted of three fuzzy control loops,and the three fuzzy controllers correspond to three suspension response parameters that affected the vehicle's dy-namic performance.The α fuzzy controller,β fuzzy controller and y fuzzy controller controlled the weight factors of the sprung mass acceleration function,dynamic load function,and dynamic deflection function based on road conditions.The control rules and functional relationships of input and output variables for each fuzzy controller were established.The fuzzy variable weight fac-tor adaptive control system of vehicle semi-active suspension was to increase the weight of sprung mass acceleration control on high-grade roads represented by A and B levels to improve vehicle comfort performance,increased the weight of dynamic deflec-tion control on middle-grade roads represented by C levels to improve vehicle comprehensive performance,and increased the weight of dynamic load control on low-grade roads represented by D levels to improve vehicle safety performance.The simulation results of bump road excitation showed that compared to passive control and fixed weight factor control,the peak the sprung mass acceleration under fuzzy variable weight factor adaptive control had decreased by 40.2%and 28.6%,the peak dynamic deflection had decreased by 41.5%and 21.0%,and the peak dynamic load had decreased by 40.1%and 31.8%.The attenua-tion speed of each response had hardly decreased,and the attenuation time remained basically consistent.There were no obvious oscillation phenomenon during the attenuation process.The simulation results of random road excitation showed that compared to passive control and fixed weight factor control,the root mean square values of sprung mass acceleration under fuzzy variable weight factor control had been reduced by 48.8%and 23.5%,the root mean square values of dynamic deflection had been re-duced by 23.6%and 13.4%,and the root mean square values of dynamic load had been reduced by 11.9%and 9.7%.The sus-pension performance had been significantly improved.When the road surface excitation input was at a lower level,the improvement of safety indicators as significant;when the road surface excitation input was at a higher level,the improvement of comfort indicators was significant;when the road surface excitation input is in the middle of the road level,the improvement of comprehensive indica-tors was significant,and the simulation results demonstrated the effectiveness and correctness of the proposed control method.

vehicle semi-active suspensionfuzzy variable weight factoradaptive controlvariable goalsfuzzy control

杨怡婷、李广棵、吴磊

展开 >

天津滨海职业学院智能制造学院,天津 300459

郑州轻工业大学机电工程学院,郑州 450002

武汉理工大学机电工程学院,武汉 430070

车辆半主动悬架 模糊变权重因子 自适应 变目标 模糊控制

国家自然科学基金项目河南省2022年科技发展计划项目2021年天津市教育科学规划延续课题项目

52005376222102220119FJE210055

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(9)