首页|基于机器视觉的高铁碳滑板图像分割算法研究

基于机器视觉的高铁碳滑板图像分割算法研究

扫码查看
针对语义分割模型识别碳滑板边缘困难、复杂背景干扰性较大以及特征信息丢失严重等问题,提出一种新型编解码结构的Swin Transformer语义分割优化算法。首先,主干网络采用U型的编解码结构,实现多尺度的信息融合;其次,添加注意力局部增强感知模块来扩大感受野并提高模型泛化能力;然后,采用具有数据相关性的上采样结构,以提高上采样质量,摆脱分辨率对预测结果的影响,加强图像重建能力;最后,将跳跃连接更换为残差路径,使编解码结构中的语义信息联系更加紧密,提升训练效率。实验结果表明,Swin Transformer语义分割优化算法相较基线算法测量预测精度提高了 3。63%,所有类别中的像素分类正确率的平均值提高了 7。29%。研究结果综合验证了新型编解码结构的Swin Transformer语义分割模型在识别和处理碳滑板任务中的优越性及鲁棒性。
Research on image segmentation algorithm of high-speed rail carbon skateboard based on machine vision
A novel Swin Transformer semantic segmentation optimization algorithm with a codec structure is proposed to solve the problems such as difficulty in identifying the edge of carbon sliding plate by semantic segmentation model,large interference in complex background,and serious feature information loss.Firstly,the backbone network adopts U-shaped codec structure to realize multi-scale information fusion.Secondly,the attention local enhancement module is added to expand the sensing field and improve the model generalization ability.Then,the upsampling structure with data correlation is used to enhance the quality of up-sampling,eliminate the impact of resolution on prediction results,and improve image reconstruction capability.Finally,the skip connection is replaced by the residual path to make the semantic information in the codec structure more closely connected and improve the training efficiency.The experimental results show that the Swin Transformer semantic segmentation algorithm improves the measurement prediction accuracy by 3.63%,and the average accuracy of pixel classification in all categories is im-proved by 7.29%.The research results confirm the superiority and robustness of the Swin Transformer semantic segmentation model in identifying and handling carbon slide tasks.

carbon sliding plateSwin Transformerlocal enhanced sensingimage reconstructionsemantic segmentation

刘伟民、张少宁、郑爱云、刘晋、郑直

展开 >

华北理工大学机械工程学院,唐山 063210

中车唐山机车车辆有限公司,唐山 064000

碳滑板 Swin Transformer 局部增强感知 图像重建 语义分割

河北省科技重大专项项目河北省自然科学基金资助项目

22282203ZE2022209086

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(9)