首页|基于AFF-Stablenet模型的小样本轴承故障诊断

基于AFF-Stablenet模型的小样本轴承故障诊断

扫码查看
针对滚动轴承在小样本条件下诊断准确率低和泛化性弱的问题,提出了一种基于注意力特征融合的深度稳定学习(Attention Feature Fusion and Deep Stable Learning,AFF-Stablenet)模型的故障诊断方法。该方法首先使用经验模态分解(Empirical Mode Decompositim,EMD)将样本分解成多段频率的子信号,求取子信号与原始信号的互相关系数,选择系数较高的前三阶子信号;利用连续小波变换(Continuws Narelet Transorm,CWT)将子信号转换为时频图表示,通过注意力特征融合的方式将这些时频图特征进行融合;最后将融合特征输入到深度稳定学习(Stablenet)模型进行训练与预测。为验证模型的有效性,采用凯斯西储大学轴承数据集进行各组对比试验,都灵理工大学轴承数据集进行验证。实验结果表明,AFF-Stablenet模型在小样本情况下的泛化性和鲁棒性均强于其他对比模型,证明了模型的优越性。
Fault diagnosis of small sample bearings based on the AFF-Stablenet model
A fault diagnosis method based on the AFF-Stablenet model is proposed to address the issues of low diagnostic accuracy and weak generalization of rolling bearings under small sample conditions.Initially,the samples are decomposed into sub-signals of multiple frequencies using EMD.The cross-correlation coefficients between the sub-signals and the original signal are computed.The top three sub-signals with higher coefficients are selected.These sub-signals are transformed into time-frequency representations using CWT.Through attention-based feature fusion,the time-frequency features are integrated.Finally,the fused features are input into the Stablenet model for training and prediction.To validate the effectiveness of the proposed model,com-parative experiments are conducted using the Case Western Reserve University bearing dataset and verified using the Politecnico di Torino bearing dataset.Experimental results demonstrate that the AFF-Stablenet model exhibits superior generalization and ro-bustness under small sample conditions compared to other models,affirming the superiority of the proposed approach.

pay attention to feature fusiondeep and stable learningrolling bearingsmall samplesfault diagnosis

郭康、王志刚、徐增丙

展开 >

武汉科技大学机械自动化学院,武汉 430081

武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081

注意特征融合 深度稳定学习 滚动轴承 小样本 故障诊断

国家自然科学基金项目

51775391

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(9)