首页|基于刚度阻尼特征的神经网络自适应阻抗控制

基于刚度阻尼特征的神经网络自适应阻抗控制

扫码查看
针对打磨机器人阻抗控制的力跟踪性能受环境刚度未知和环境位置变化影响的问题,提出了一种基于刚度阻尼特征的神经网络自适应阻抗控制方法。由于环境参数未知导致参考轨迹不易确定,构造了一个自适应PI控制律,进行参考轨迹补偿,减小力跟踪的稳态误差;为了提高力跟踪控制的动态性能,根据力误差对刚度系数及阻尼系数的统一调节规律——刚度阻尼特征,并结合力误差具有时变、非线性的特点,设计了一个描述力误差与刚度阻尼特征关系的激活函数,构建自适应阻抗参数神经网络模型,其输出为刚度系数和阻尼系数,通过基于参考轨迹补偿与自适应阻抗参数神经网络模型融合的阻抗控制,保证力跟踪控制的柔顺性。仿真结果表明,相比于传统阻抗控制和参考轨迹PI补偿的阻抗控制,所提出的自适应阻抗控制方法具有更好的力跟踪效果。
Neural network adaptive impedance control based on stiffness damping characteristics
A neural network adaptive impedance control method based on stiffness damping characteristics was proposed to address the problem that the force tracking performance of impedance control for sanding robots was affected by the unknown en-vironmental stiffness and the change of environmental position.Since the reference trajectory is not easy to be determined due to the unknown environmental parameters,an adaptive PI control law was constructed to compensate the reference trajectory and re-duce the steady-state error of force tracking;in order to improve the dynamic performance of the force tracking control,according to the uniform regulation law of the force error on the stiffness coefficient and damping coefficient—stiffness damping characteris-tics,and combined with that the force error has the characteristics of time-varying and non-linear,an activation function describing the relationship between force error and stiffness damping characteristics was designed,and an adaptive impedance parameter neu-ral network model was constructed,whose outputs were stiffness coefficient and damping coefficient,to ensure the suppleness of force tracking control through the impedance control based on the fusion of the reference trajectory compensation and an adaptive impedance parameter neural network model.The simulation results show that the proposed adaptive impedance control method has better force tracking effect than the traditional impedance control and the impedance control with reference trajectory PI compen-sation.

force-flexing controlunknown environmentreference trajectory compensationvariable impedance parameter modelneural network

党选举、黄伟健

展开 >

桂林电子科技大学电子工程与自动化学院,桂林 541004

广西智能综合自动化高校重点实验室,桂林 541004

力柔顺控制 未知环境 参考轨迹补偿 变阻抗参数模型 神经网络

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(12)