首页|基于学习机制蚁群算法的移动机器人路径规划

基于学习机制蚁群算法的移动机器人路径规划

扫码查看
针对U型障碍物环境中移动机器人路径规划问题,提出了一种学习机制蚁群算法。首先,为解决算法运行时间长的问题,引入邻域剔除,舍弃较差和对称路径;其次,为解决收敛速度慢的问题,运用禁忌策略,使蚂蚁快速逃离U型障碍物;然后,为解决路径死锁的问题,提出学习机制,不断舍弃死锁路径;最后,将该算法与其他改进算法进行仿真对比,结果表明学习机制蚁群算法相比对照组算法不仅缩短了运行时间,还提升了收敛速度,验证了该算法的优越性。
Path planning of mobile robot based on learning mechanism ant colony algorithm
A learning mechanism ant colony algorithm was proposed for the path planning problem of mobile robot in U-shaped obstacle environment.Firstly,to solve the problem of long algorithm running time,neighborhood removal was introduced to discard poor and symmetric paths.Secondly,to solve the problem of slow convergence speed,taboo strategies were applied to enable ants to quickly escape U-shaped obstacles.Then,to solve the problem of path deadlock,a learning mechanism was proposed to continu-ously discard deadlocked paths.Finally,a simulation comparison was conducted between the proposed algorithm and other im-proved algorithms.The results showed that the learning mechanism ant colony algorithm not only shortened the running time com-pared to the control group algorithm,but also improved the convergence speed,which verifies superiority of the algorithm.

path planningant colony algorithmneighborhood removallearning mechanismmobile robotU-shaped obstacle

唐宏伟、罗佳强、邓嘉鑫、王军权、石书琪

展开 >

邵阳学院多电源地区电网运行与控制湖南省重点实验室,邵阳 422000

路径规划 蚁群算法 邻域剔除 学习机制 移动机器人 U型障碍物

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(12)