首页|基于随机重启的机器人高斯过程运动规划

基于随机重启的机器人高斯过程运动规划

扫码查看
针对高斯路径运动规划(GPMP2)算法应用于移动机器人时,在复杂障碍物环境中易陷入局部最优和避障性能不佳的问题,提出一种基于随机重启和避障改进的(GPMP2-SROAI)方法。首先,引入协变哈密尔顿优化(CHOMP)算法中的随机重启机制对轨迹施加扰动,使其跳出局部最优,提高轨迹优化的效率和鲁棒性;随后,引入基于障碍函数的模型预测控制(MPC-CBF)方法,在优化过程中通过预测机器人的运动范围以避免碰撞。仿真结果表明,改进后的规划成功率达到了 92。6%,较GPMP2提高了 24。9%,路径最短概率提高了 12。5%,平均平滑度提高了 4。8%,与主流算法进行对比也取得了更好的轨迹规划质量,轨迹更加平滑且避障效果更佳。
Gaussian process motion planning for robots based on random restarts
In complex obstacle environments,mobile robots using the Gaussian Path Motion Planning(GPMP2)algorithm suffer from the problems of falling into local optimums and poor obstacle avoidance performance,a method based on stochastic restart and obstacle avoidance improvement was proposed Gaussian Process Motion Planning with Stochastic Restart and Obstacle Avoid-ance Improvement(GPMP2-SROAI).Firstly,the random restart mechanism in the Covariant Hamiltonian Optimisation for Motion Planning(CHOMP)was introduced to apply perturbations to the trajectory to jump out of the local optimum and improve the efficiency and robustness of the trajectory optimization.Then,a Model Predictive Control with Control Barrier Function(MPC-CBF)approach based on the barrier function was introduced to avoid collisions by predicting the range of motion of the robot dur-ing the optimisation process.Simulation results show that,the improved algorithm achieves a success rate of 92.6%in path plan-ning,which is 24.9%higher than that of GPMP2,12.5%higher than the path shortest probability,and 4.8%higher than the average smoothing degree,and also achieves a better quality of trajectory planning compared with the mainstream algorithms,with smoother trajectories and better obstacle avoidance effects.

path planningrandom restartrobot obstacle avoidancefactor graph optimisation

袁绪清、魏媛媛、王耀力、常青、付世沫

展开 >

太原理工大学电子信息与光学工程学院,晋中 030600

太原供水设计研究院有限公司,太原 030024

路径规划 随机重启 机器人避障 因子图优化

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(12)