首页|基于改进YOLOv8n的铝型材表面小目标缺陷检测方法

基于改进YOLOv8n的铝型材表面小目标缺陷检测方法

扫码查看
针对工业上铝型材表面缺陷检测速度慢,小目标缺陷如擦花、漆泡等检测精度低的问题,提出一种基于改进YOLOv8n的铝型材表面小目标缺陷检测模型。首先,采用跨尺度特征融合,通过融合不同尺度的特征,提升网络对多尺度信息的感知能力。其次,对YOLOv8骨干网络C2f结构进行改进,通过加入RFAConv注意力卷积设计了一种新的结构,以加强网络特征提取能力,提高小目标检测精度。在颈部使用轻量级RepGhost模块,以降低参数数量和计算量。最后,采用WIoUV3替换原YOLOv8模型中CIoU损失函数,以提高检测精度和收敛速度。在铝型材表面缺陷数据集上进行大量实验,实验结果表明改进模型mAP@0。5提升2。5%、帧率达到了 110 fps,权重文件大小降低16。2%,检测效果优于原模型。此外,在VOC2012数据集和东北大学热轧带钢表面缺陷数据集上表明改进算法有良好的鲁棒性,改进模型满足工业上铝型材检测要求。
A small target defect detection method for aluminum profile surface based on improved YOLOv8n
To address the issues of slow surface defect detection speed in industrial aluminum profiles,as well as low accuracy in detecting small target defects such as scratches and paint bubbles,a small target aluminum profile surface defect detection model based on improved YOLOv8n was proposed.Firstly,cross-scale feature fusion was employed to enhance the network's ability to perceive multiscale information,by integrating features from different scales.Secondly,the C2f structure of the YOLOv8 backbone network was improved by incorporating RFAConv attention convolution.This was done to design a new structure to enhance the network's feature extraction ability and improve the accuracy of small object detection.In the neck region,lightweight RepGhost modules were used to reduce parameter count and computational complexity.Finally,the original YOLOv8's CIoU loss function was replaced with WIoUV3 to improve detection accuracy and convergence speed.Extensive experiments on aluminum profile de-fect datasets showed the model's effectiveness.It achieved a 2.5%increase in mAP@0.5,The frame rate has reached 110 fps,and reduced weight file size by 16.2%,surpassing the original model's performance.Experiments on the VOC2012 dataset and the Northeastern University hot rolled strip surface defect dataset demonstrated the algorithm's robustness.The refined model ef-fectively meets industrial demands for aluminum profile detection.

surface defect detectionattention convolutionfeature fusionYOLOv8small object detection

孙铁强、刘俊、宋超、肖鹏程

展开 >

华北理工大学人工智能学院,唐山 063210

表面缺陷检测 注意力卷积 特征融合 YOLOv8 小目标检测

2024

现代制造工程
北京机械工程学会 北京市机械工业局技术开发研究所

现代制造工程

CSTPCD北大核心
影响因子:0.374
ISSN:1671-3133
年,卷(期):2024.(12)