首页|基于无人机快速抓拍与人脸识别的露天矿山安全预警技术进展

基于无人机快速抓拍与人脸识别的露天矿山安全预警技术进展

扫码查看
无人机技术与人脸识别技术的快速发展,为露天矿山安全管理工作中及时发现"违章作业"提供了有效的技术手段,有助于改进露天矿山作业现场的安全管理.通过无人机实时监控,能够有效识别作业人员未佩戴安全帽、车辆插队、人员进入特殊管控区等异常情况,并且通过与人脸识别技术相结合能够快速确认作业人员身份,从而及时地进行预警和干预,减少安全事故的发生.与传统的人工巡查方式相比较,无人机巡查具有覆盖范围、路径灵活等优势,能够与自动化图像分析相结合,降低人工监控的工作量,提升安全风险行为识别的准确性和及时性.这些技术手段的应用,有助于形成提升企业整体管理水平.从违章行为的识别和违章人员识别两方面综述了基于无人机快速抓拍与人脸识别的露天矿山安全预警技术进展,希望可以推动无人机和人工智能技术在露天矿山领域的应用.
Research Progress on Safety Warning Technology for Opencast Mines Based on Rapid UVA Capture and Facial Recognition
The rapid development of unmanned aerial vehicle technology and face recognition technology has provided an effective technical means for timely detection of"illegal operations"in open-pit mine safety management,which is helpful to improve the standardized operation and personnel safety of open-pit mine operation sites.Through real-time monitoring by UVAs,it is possible to quickly capture abnormal situations such as operator not-wearing safety helmets,vehicles cutting in line,and personnel entering restricted areas.In combination with face recognition technology,the identity of operators can be quickly confirmed,so as to timely carry out early warning and intervention to reduce the occurrence of safety accidents.Compared with the traditional manual inspections,UVA safety inspections possess the advantages of wide coverage and flexible paths.They can be combined with automated image analysis to reduce the workload of manual monitoring and improve the accuracy and timeliness of safety risk behavior identification.The application of these technical means is helpful to gradually form good work habits and safety culture,and improve the overall management level of enterprises.This paper reviews the progress of open-pit mine safety warning technology based on UVA rapid capture and face recognition considering the recognition of behaviors and personnel violating rules,hoping to promote the application of UVAs and artificial intelligence technologies in the field of open-pit mines.

unmanned aerial vehiclereal-time monitoringidentificationsafety inspectionsartificial intelligence

崔年生、唐鹏、郑晓东、王振宇、郭伟杰

展开 >

福建省新华都工程有限责任公司,福建 龙岩 364214

厦门大学电子科学与技术学院,福建 厦门 361005

无人机 实时监控 识别 安全检查 人工智能

2025

机电工程技术
广东省机械研究所,广东省机械技术情报站,广东省机械工程学会

机电工程技术

影响因子:0.348
ISSN:1009-9492
年,卷(期):2025.54(1)