首页|基于轻量级神经网络的端子排文本检测

基于轻量级神经网络的端子排文本检测

扫码查看
针对目前深度学习方法对端子排检测精度低且模型庞大,难以在移动端部署,进而无法实现工业化应用的问题,提出一种基于轻量级神经网络的端子排文本检测模型.首先,对PSENet改进主干网络,提出一种提取融合图像特征与边缘特征的主干网络,提高特征的表达能力;其次,提出一种联合空间注意力与嵌入位置信息的通道注意力的机制,增强对重要信息的提取能力;最后,对特征金字塔网络进行轻量化改进,降低参数量.在端子排标签数据集上测试得出结果:相比于PSENet模型,改进后的模型精确率上升了3%,F1-score上升了1.5%,模型大小降低了37.72%.通过实验对比,该模型相比于其他主流模型精确率和轻量化水平显著提高,研究结果可在移动端上为检测端子排标签提供技术支持.
Lightweight Neural Network Based Text Detection for Terminal Blocks
Aiming at the problem that the current deep learning methods have low accuracy and a huge model for terminal row detection,which is difficult to deploy on the mobile side and thus cannot realize industrialized application,a lightweight neural network-based text detection model for terminal row is proposed.Firstly,PSENet improves the backbone network and proposes a backbone network that extracts fused image features and edge features to improve the expression ability of the features;secondly,it proposes a mechanism that combines spatial attention and channel attention embedded in positional information to enhance the ability to extract important information;lastly,it improves the feature pyramid network in a lightweight way and reduces the number of parameters.Tests on the terminal row labeling dataset yield results:compared with the PSENet model,the improved model increases accuracy by 3%,the F1-score by 1.5%,and the model size is reduced by 37.72%.The experimental comparison shows that the model significantly improves the accuracy rate and lightweight level compared to other mainstream models,and the results of the study can provide technical support for detecting terminal row labels on mobile.

text detectionattention mechanismdepth separable convolutionMobileNetedge detection algorithm

黄辉、谭晓茵、孙梦雪、舒展

展开 >

五邑大学智能制造学部,广东 江门 529020

文本检测 注意力机制 深度可分离卷积 MobileNet 边缘检测算法

2025

机电工程技术
广东省机械研究所,广东省机械技术情报站,广东省机械工程学会

机电工程技术

影响因子:0.348
ISSN:1009-9492
年,卷(期):2025.54(1)