首页|深度学习与特征多尺度融合的PCB表面缺陷检测

深度学习与特征多尺度融合的PCB表面缺陷检测

扫码查看
印刷电路板(Printed Circuit Board,PCB)作为电子设备的核心,其性能和可靠性对电子产品至关重要.鉴于传统检测方法在效率和准确性上的局限性,旨在通过技术创新显著提升PCB缺陷检测的性能.为此,构建了YOLOv8-Defect模型,该模型在YOLOv8 的基础上进行优化,包括引入SEAttention机制、Soft-NMS算法和Wise-IoU技术,并对C2f架构进行了升级至C3 架构.通过先进的数据增强技术和模型训练策略,YOLOv8-Defect在检测PCB表面缺陷方面实现了性能的显著提升.实验结果表明,该模型不仅能够高效地识别电路板上的微小缺陷,还能实现实时监控,确保了检测过程的连续性和即时性.研究成果不仅为工业质量检测领域带来了创新的解决方案,也彰显了深度学习技术在解决实际工业挑战中的巨大应用潜力,为电子设备质量和生产效率的提高提供了坚实的技术支撑.
Deep Learning and Multi-scale Feature Fusion for PCB Surface Defect Detection
As the core of electronic equipment,the performance and reliability of printed circuit board(PCB)circuit board are crucial to electronic products.In view of the limitations of traditional inspection methods in terms of efficiency and accuracy,aiming to significantly improve the performance of PCB defect detection through technological innovation,the YOLOv8-Defect model is constructed,which is optimized on the basis of YOLOv8,including the introduction of SEAttens mechanism,Soft-NMS algorithm and Wise-IoU technology,and the C2f architecture is upgraded to the C3 architecture.Through advanced data augmentation techniques and model training strategies,YOLOv8-Defect has achieved a significant performance improvement in detecting PCB surface defects.Experimental results show that the model can not only efficiently identify small defects on the circuit board,but also realize real-time monitoring,ensuring the continuity and immediacy of the inspection process.The results not only bring innovative solutions to the field of industrial quality inspection,but also demonstrate the great application potential of deep learning technology in solving practical industrial challenges,and provide solid technical support for the improvement of electronic equipment quality and production efficiency.

data augmentationsurface defects on PCB circuit boardsmulti scale fusion of featuresYOLOv8 defectWise-IoUdeep learning

江跃龙、吕超鑫、唐鹤芳

展开 >

广州铁路职业技术学院,广州 510430

数据增强 PCB表面缺陷 特征多尺度融合 YOLOv8-Defect Wise-IoU 深度学习

2025

机电工程技术
广东省机械研究所,广东省机械技术情报站,广东省机械工程学会

机电工程技术

影响因子:0.348
ISSN:1009-9492
年,卷(期):2025.54(1)