首页|基于VMD-FOA-LSSVM的输电线路故障诊断方法

基于VMD-FOA-LSSVM的输电线路故障诊断方法

扫码查看
针对现有输电线路短路故障诊断方法精度较低的问题,提出了一种基于VMD-FOA-LSSVM的输电线路故障诊断方法。首先通过VMD对发生故障后的三相电压数据进行分解,得到了一连串的模态成分;随后分别求出各模态分量的样本熵值,并将这些样本熵值组成故障特征集。随后通过改变步长加强了果蝇算法的全局搜索能力,采用改良的果蝇算法优化最小二乘支持向量机的分类模型,进一步提高该模型的分类性能。最后将故障特征集输入到FOA-LSSVM模型里进一步训练,并与几种常用的故障诊断方法进行对比。实验结果表明,FOA-LSSVM方法在输电线路故障诊断方面精度较高,可以更准确、更快速地对输电线路的故障进行诊断。
Fault Diagnosis Method of Transmission Line Based on VMD-FOA-LSSVM
To address the issue of low accuracy of existing diagnostic methods in diagnosing short circuit faults on transmission lines,a fault diagnosis method of transmission lines based on VMD-FOA-LSSVM is proposed.Firstly,the three-phase fault voltage data are decompose with VMD to acquire a series of modal components.The sample entropy values of each modal component are obtained respectively,and the sample entropy values are used to compose the fault feature set.Then,the fruit fly optimization algorithm(FOA)is improved by changing the step size,so as to strengthen its global search ability of the algorithm.Then the improved FOA is used to optimize the least squares SVM classification model to further improve the classification performance of the model.Finally,the fault feature set is put into FOA-LSSVM model for further training,and compared with several common fault diagnosis methods.The experimental results show that FOA-LSSVM method has higher accuracy in transmission line fault diagnosis,and can diagnose transmission line faults more accurately and quickly.

transmission linesfault diagnosissupport vector machineFOA

宫臣、韩猛

展开 >

山西潞安集团蒲县黑龙煤业有限公司,山西 临汾 041200

辽宁工程技术大学电控学院,辽宁 葫芦岛 125000

输电线路 故障诊断 支持向量机 果蝇算法

2025

机电工程技术
广东省机械研究所,广东省机械技术情报站,广东省机械工程学会

机电工程技术

影响因子:0.348
ISSN:1009-9492
年,卷(期):2025.54(1)