首页|基于PointNet的钢板毛坯垛点云分割

基于PointNet的钢板毛坯垛点云分割

扫码查看
钢板毛坯垛拆垛工序中,钢板毛坯分层厚度的估计是推钢机准确且安全执行推钢动作的关键;当前不少企业此道生产工序仍主要靠操作员人工观察的方式估算钢板厚度及与传送辊道的相对高度,其估算不准易导致碰撞,造成输送设备损坏生产中断。提出一种钢板毛坯垛智能分层方法,该方法结合现场工况环境采用激光雷达,对钢板毛坯垛进行三维点云成像,然后对采集的点云数据,用PointNet神经网络框架进行特征识别、分层分割与提取,最后对分割的不同层根据标定值,换算成真实厚度。根据现场实验结果表明,PointNet对钢板毛坯垛分割的识别率达到了 87。4%,厚度估算误差低于 1。2 cm,根据钢厂钢板毛坯规格表(3 种规格150、160、180 cm)可以准确估计出钢板毛坯厚度的规格,识别速度15 帧/s,满足现场工况要求。
PointNet Based Point Cloud Segmentation of Steel Plate Blank Stack
The estimation of the layer thickness of the steel plate blank during the process of disassembling and stacking is crucial for the accurate and safe execution of the pushing action by the steel pushing machine.At present,many enterprises still rely on manual observation by operators to estimate the thickness of steel plates and the relative height with the conveyor roller in this production process.Inaccurate estimation can easily lead to collisions,resulting in damage to the conveyor equipment and production interruption.An intelligent layering method for steel plate blank stacks is proposed.The method combines the on-site working environment with laser radar to perform three-dimensional point cloud imaging of the steel plate blank stack.Then,the collected point cloud data is subjected to feature recognition,layered segmentation,and extraction using the PointNet neural network framework.Finally,different segmented layers are converted into real thickness based on calibration values.According to the on-site experimental results,PointNet achieves a recognition rate of 87.4%for steel plate blank stack segmentation,with a thickness estimation error of less than 1.2 cm.Based on the steel plate blank specification table(three specifications of 150,160,and 180 cm),the thickness specification of the steel plate blank can be accurately estimated,with a recognition rate is 15f/s,meeting the requirements of on-site working conditions.

steel plate blank stackpoint cloud segmentationfeature recognitionPointNet

林振杨

展开 >

福建三钢闽光股份有限公司,福建 三明 365000

钢板毛坯垛 点云分割 特征识别 PointNet

2025

机电工程技术
广东省机械研究所,广东省机械技术情报站,广东省机械工程学会

机电工程技术

影响因子:0.348
ISSN:1009-9492
年,卷(期):2025.54(1)