首页|多策略融合的多目标萤火虫算法

多策略融合的多目标萤火虫算法

扫码查看
为解决多目标萤火虫算法处理复杂优化问题时所表现出的勘探能力弱、收敛性及分布性差等问题,提出了一种多策略融合的多目标萤火虫算法(MOFA-MSF).首先,采用随机化与均匀化相结合的方法初始化种群,保证了初始种群的分布性好;其次,通过档案精英解引导萤火虫移动,在萤火虫移动公式中引入莱维飞行随机扰动并添加变异算子,避免种群陷入局部最优,平衡了算法的局部搜索和去全局勘探能力;最后,引入拥挤距离机制维持外部档案,以获取均匀分布的Pareto前沿.将MOFA-MSF算法与 5 种经典算法和 7 种新近算法进行对比,实验结果显示,MOFA-MSF在勘探能力、收敛性及分布性上性能良好.
Multi-objective Firefly Algorithm based on Multi-strategy Fusion
In order to solve the problems such as weak exploration ability,poor convergence and poor distribution of multi-objective Firefly algorithm when dealing with complex optimization problems,this paper proposes a multi-objective Firefly algorithm based on multi-strategy fusion.Firstly,a combination of randomization and homogenization is used to initialize the population,ensuring the u-niformity and randomness of the initial population;Secondly,guided by the elite solution of ar-chives,the firefly movement is introduced into the firefly movement formula by introducing Levy flight random perturbation and adding mutation operators to avoid the population falling into local op-tima,balancing the algorithm's local search and de global exploration capabilities;Finally,a crow-ding distance mechanism is introduced to maintain external files to obtain evenly distributed Pareto frontiers.Comparing the MOFA-MSF algorithm with 5 classic algorithms and 7 recent algorithms,the results show that MOFA-MSF has good performance in exploration ability,convergence,and distribution.

firefly algorithmmulti-objective optimizationmulti-strategycrowding distanceLévy flightmutation operator

黄建平、陈谣、邢文来、康平、赵嘉

展开 >

南昌工程学院信息工程学院,330099,南昌

萤火虫算法 多目标优化 多策略 拥挤距离 莱维飞行 变异算子

江西省教育厅科技计划项目江西省教育厅科技计划项目

GJJ2201506GJJ2201803

2023

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2023.41(6)
  • 8