首页|基于改进DeepLabV3+算法的高分影像地物分割研究

基于改进DeepLabV3+算法的高分影像地物分割研究

扫码查看
针对高分辨率遥感影像地物分割研究普遍存在的计算复杂、分割精度低、空洞大等缺陷,提出了引入双注意力机制的DeepLabV3+网络模型.该模型采用轻量化MobilenetV2 作为主干网络,并充分考虑了网络参数设定、边缘提取优化和性能三个方面,从而获取密集的上下文信息.将所设计的模型应用于寻乌县高分辨率遥感影像数据集验证,结果表明,加入双注意力机制的DeepLabV3+网络模型对八种地物的分割均取得较好的分割精度,尤其是对园林、水体和道路的分割,分割精度高达 92%、90%和 96%.本研究为高分影像的地物分割及如何弥补基础的DeepLavV3+缺陷等问题提供科学参考.
Research on High-resolution Image Feature Segmentation based on Improved DeepLabV3+ Algorithm
Aiming at the common shortcomings of the research on high-resolution remote sensing im-age ground object segmentation,such as complex computation,low segmentation accuracy and large holes,this paper proposes DeepLabV3+ network model with dual attention mechanism.This model uses lightweight MobilenetV2 as the backbone network,and fully considers three aspects of network parameter setting,edge extraction optimization and performance,so as to obtain dense context infor-mation.The model designed in this paper is applied to the high-resolution remote sensing image dataset of Xunwu county for verification.The results show that the DeepLabV3+ network model with dual attention and resourceful achieves good segmentation accuracy for eight ground objects,espe-cially for the segmentation of gardens,water bodies and roads,with the segmentation accuracy up to 92%,90%and 96%.This study provides a scientific reference for high-resolution image feature segmentation and how to make up for the defects of basic DeepLavV3+.

DeepLabV3attention mechanismsegmentationhigh-resolution imagery

龙北平、刘锟铭、占小芳、李恒凯

展开 >

江西省地质局地理信息工程大队,330001,南昌

江西理工大学,341000,江西,赣州

DeepLabV3 注意力机制 分割 高分影像

江西省地质局基金

360000228888030003254

2023

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2023.41(6)
  • 14