首页|融合多源数据的城市功能区识别与分析

融合多源数据的城市功能区识别与分析

扫码查看
城市化的快速发展使城市的空间结构发生变化,合理划分城市功能区有利于监测城市化以及城市规划与管理。遥感影像能反映地物的物理特征,但无法获取其社会经济特征。使用高分二号遥感影像数据、POI数据、夜间灯光数据和建筑物轮廓数据,融合多源数据的特征信息并基于Scikit-Learn机器学习方法实现城市功能区的划分。首先,以道路网为基本研究单元构建交通分析区,将研究区划分为 827 个地块,然后,结合核密度分析、频数密度法和区域分析,从研究区内提取并融合多源数据的特征信息,基于 3 种分类模型识别城市功能区。研究结果表明,通过综合利用光谱、纹理构建的BOVW模型、POI和夜间灯光数据构建的社会经济特征和建筑物轮廓数据的景观特征等特征指标,结合随机森林模型的方法,取得了最佳识别结果,其精度高达 76。65%。验证了本文方法的可行性和有效性。
Identification and Analysis of Urban Functional Areas by Fusion of Multi-source Data
The rapid development of urbanization has changed the spatial structure of the city,and the rational division of urban functional areas is conducive to the monitoring of urbanization and ur-ban planning and management.Remote sensing images can reflect the physical characteristics of ground objects,but cannot obtain their socioeconomic characteristics.This study uses Gaofen-2 re-mote sensing image data,POI data,nighttime light data and building outline data to integrate the feature information of multi-source data and implement the division of urban functional areas based on the Scikit-Learn machine learning method.Firstly,the traffic analysis area was constructed with the road network as the basic research unit,and the research area was divided into 827 plots,and then combined with kernel density analysis,frequency density method and regional analysis,extrac-ted and the feature information of multi-source data is integrated to identify urban functional areas based on three classification models.The research results show that the best recognition results are achieved by comprehensively utilizing the BOVW model constructed from spectrum and texture,so-cioeconomic characteristics constructed from POI and night light data,and landscape characteristics of building outline data,combined with the random forest model method,its accuracy is as high as 76.65%.The feasibility and effectiveness of this method are verified.

Gaofen-2 remote sensing imagePOIrandom foresturban functional area

齐广玉、程玮瑜、程朋根

展开 >

东华理工大学测绘与空间信息工程学院,330013,南昌

同济大学建筑设计研究院(集团)有限公司建筑设计一院,200092,上海

自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,330013,南昌

高分二号遥感影像 POI 随机森林 城市功能区

国家自然科学基金江西省自然科学基金面上项目

4186105220202BABL202045

2024

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2024.42(2)
  • 31