首页|基于PointNet++的沙质海岸点云形变监测分析

基于PointNet++的沙质海岸点云形变监测分析

扫码查看
沙质海岸因其特殊的物理结构,极易受到气候变化的影响而遭受海水侵蚀发生形变。为了获取沙质海岸的形变信息,通常采用M3C2 算法计算研究区的形变量,但该方法仅考虑点云间邻域关系,缺失对点云全局的特征描述,因此,本实验采用荷兰Kijkduin地区监测的为期 7 个月的一公里海岸点云数据作为研究对象,通过PointNet++深度学习算法提取不同尺度点云的局部特征和全局特征,构建点云特征向量的距离度量计算研究区内点云的形变量。实验结果发现,研究区内西部和中部形变量显著,最大月平均形变量为 0。305 1 m,并根据形变量的变化分析出沙质海岸的形变量与降雨量和温度有密切关系。该研究方法体系充分考虑到点云的局部特征和全局特征,从而实现沙质海岸点云的高效形变监测,对沙质海岸的防护具有重要意义。
Analysis of Point Cloud Deformation Monitoring for Sandy Coast Based on PointNet++
Due to its special physical structure,sandy coasts are very susceptible to deformation by seawater erosion under the influence of climate change.In order to obtain the deformation informa-tion of sandy coasts,the M3C2 algorithm is usually used to calculate the deformation of the study ar-ea,but this method only considers the neighbourhood relationship between point clouds and lacks the global characterization of point clouds.Therefore,in this experiment,we used the one-kilome-tre coastal point cloud data monitored in Kijkduin area of the Netherlands for a period of seven months as the study object,and extracted local and global features of point clouds at different scales by PointNet++ deep learning algorithm,and constructed the distance metric of point cloud feature vectors to calculate the local and global features of point clouds within the study area.The local and global features of the point cloud were extracted by the PointNet++ deep learning algorithm,and the distance metric of the point cloud feature vectors was constructed to calculate the morphology of the point cloud in the study area.The experimental results show that the shape variables in the western and central parts of the study area are significant,and the maximum monthly average shape variable is 0.305 1 m.Based on the variation of shape variables,it is analyzed that the shape variables of the sandy coast have a close relationship with the rainfall and temperature.This research methodolo-gy takes into full consideration of the local and global characteristics of point clouds,thus realizing the efficient deformation monitoring of point clouds on sandy coasts,which is of great significance for the protection of sandy coasts.

sandy coastmulti-temporal point cloudPointNet++deformation analysisinter-point cloud distance

舒研鑫、夏元平、王骈臻

展开 >

东华理工大学测绘与空间信息工程学院,330013,南昌

沙质海岸 多时序点云 PointNet++ 形变分析 点云间距离

国家自然科学基金国家自然科学基金

4196201842174055

2024

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2024.42(2)
  • 18