首页|基于ResNet50与通道注意力的遥感图像场景分类

基于ResNet50与通道注意力的遥感图像场景分类

扫码查看
卷积神经网络广泛应用于图像分类,但传统的卷积神经网络直接应用于遥感图像场景分类有一定的局限性。遥感图像中存在类内差异大、类内相似度高的现象,导致网络无法准确地提取到图像中的特征,给遥感图像分类任务带来巨大的困难。通道注意力机制有专注于提取主要特征而忽略次要特征的优点,将其加入网络模型可以增强卷积神经网络的识别图像特征能力,因此,提出了一种基于ResNet50 与通道注意力结合的网络模型(ResNet50+Attention),在UCMD数据集上使用初始化网络参数的方法进行遥感场景图像分类任务,对比了经典网络模型AlexNet、DenseNet、VGG16 和GooLeNet,ResNet50+Attention在总体准确率、精确度、召回率和特异度分类指标上,明显优于其他模型。并进行了与基础ResNet50 模型的消融实验,包括对比了准确率曲线、混淆矩阵和单独类的分类指标。结果表明,ResNet50+Attention在总体准确率、精确度、召回率和特异度上分别达到了 91。7%、92。1%、91。8%和 99。6%,相比于ResNet50 分别提高了 4%、3。8%、4%和 0。2%,证明了该网络模型的有效性。
Remote Sensing Image Scene Classification Based on ResNet50 and Channel Attention
Convolutional neural networks(CNNs)are widely used for image classification.Howev-er,directly applying traditional CNNs to remote sensing image scene classification has certain limita-tions.Remote sensing images exhibit large intra-class differences and high intra-class similarities,making it challenging for networks to accurately extract image features,thus posing significant diffi-culties in remote sensing image classification tasks.The channel attention mechanism,with its abili-ty to focus on important features while ignoring less relevant ones,can enhance the recognition capa-bility of CNNs for image features.Therefore,a network model combining ResNet50 and channel at-tention,called ResNet50+Attention,is proposed.The UCMD data set is used with the initialization of network parameters for remote sensing scene image classification tasks.Classic network models in-cluding AlexNet,DenseNet,VGG16,and GoogLeNet are compared.ResNet50+Attention outper-forms other models significantly in terms of overall accuracy,precision,recall,and specificity clas-sification metrics.Disintegration experiments with the base ResNet50 model are conducted,inclu-ding accuracy curves,confusion matrices,and individual class classification metrics.The results show that ResNet50+Attention achieves overall accuracy,precision,recall,and specificity of 91.7%,92.1%,91.8%,and 99.6%,respectively,showing improvements of 4%,3.8%,4%,and 0.2%compared to ResNet50,thus confirming the effectiveness of this network model.

convolutional neural networkimage classificationattention mechanismremote sensing imagesResNet50

逯登科、罗亦泳、张紫怡、张震、田晓鹏

展开 >

东华理工大学测绘与空间信息工程学院,330013,南昌

卷积神经网络 图像分类 注意力机制 遥感图像 ResNet50

江西省自然科学基金

20202BABL204070

2024

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2024.42(2)
  • 24