首页|高阶Haar小波方法求解一类Caputo-Fabrizio分数阶微分方程

高阶Haar小波方法求解一类Caputo-Fabrizio分数阶微分方程

扫码查看
利用高阶Haar小波配置法求解了一类Caputo-Fabrizio分数阶微分方程。通过Caputo-Fabrizio分数阶积分将原方程转化为等价的二阶常微分方程,再结合高阶Haar小波配置法将得到的常微分方程化为线性代数方程组进行求解。数值实验表明,使用很小的尺度J可以得到满意的数值精度,且增加尺度J可以获得更高精度的数值解,该算法稳定,具有一定的应用价值。
Numerical Solution of A Class of Caputo-Fabrizio Fractional-order Differential Equations Using Higher Order Haar Wavelet Method
Higher order Haar wavelet collocation method is used to solve a class of Caputo-Fabrizio fractional differential equations.Through Caputo-Fabrizio fractional integration,the original equa-tion is transformed into an equivalent second order ordinary differential equation,and then combined with higher order Haar wavelet collocation method,the obtained ordinary differential equation is transformed into a system of linear algebra equations.Numerical experiments have shown that using a very small scale J can achieve satisfactory numerical results,and increasing the scale J can obtain the numerical solutions with higher accuracy.The algorithm is stable and has some application value.

higher order Haar waveletCaputo-Fabrizio derivativeordinary differential equationcollocation method

楼钦艺、许小勇、何通森、朱婷

展开 >

东华理工大学理学院,330013,南昌

高阶Haar小波 Caputo-Fabrizio导数 常微分方程 配置法

江西省自然科学基金东华理工大学博士科研基金

2020BABL201006DKBK2019213

2024

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2024.42(3)
  • 2