首页|基于GEE的鹰潭市1986-2023年植被覆盖时空变化特征及趋势分析

基于GEE的鹰潭市1986-2023年植被覆盖时空变化特征及趋势分析

扫码查看
植被作为陆地生态系统的核心组成部分,是生态恢复进程的关键指标。基于1986年至2023年期间拍摄的Landsat遥感影像,运用Google Earth Engine(GEE)云平台来计算年度平均植被覆盖指数(NDVI)。此外,结合ArcGIS和MATLAB软件工具,采用了Theil-Sen趋势估计、Mann-Kendall趋势检验和Hurst指数分析等方法,对江西省鹰潭市过去38年的植被覆盖时空变化进行全面分析。结果表明,鹰潭市的植被覆盖在空间分布上呈现出"南北高,中间低"的特点,38年间的平均NDVI为0。517。其中,植被覆盖增加区域占总面积的96。259%。时间序列分析表明,植被覆盖整体呈波动上升趋势,其中97。266%的区域显示出先降后升的逆转趋势。表明尽管历史上存在退化迹象,但当前植被覆盖朝着积极的方向发展,这可能与当地实施的植被恢复工程有关。该研究结果深化了对鹰潭市植被覆盖时空变化的理解,对于生态保护和促进可持续发展具有重要的意义和实际应用价值。
Spatiotemporal Variation Characteristics and Trend Analysis of Vegetation Cover in Yingtan City from 1986 to 2023 Based on GEE
Vegetation,as a core component of terrestrial ecosystems,is a key indicator of ecological restoration.The study draws on Landsat remote sensing images from 1986 to 2023,utilizing the Google Earth Engine(GEE)cloud platform to calculate the annual average Normalized Difference Vegetation Index(NDVI).Additionally,the Theil-Sen trend estimation,Mann-Kendall trend test,and Hurst index analysis methods are employed alongside ArcGIS and MATLAB software to comprehensively analyze the spatiotemporal changes in vegetation coverage in Yingtan city,Jiangxi province of China over the past 38 years.The results indicate that vegetation cover in Yingtan city exhibits a"high in the north and south,and low in the middle"spatial distribution pattern,with an average NDVI of 0.517 over the 38-year period.Areas with increasing vegetation coverage account for 96.259%of the total area.Time series analysis reveals an overall fluctuating upward trend in vegetation coverage,with 97.266%of the area demonstrating a reversal from initial decline followed by subsequent increase.This suggests that,despite historical degradation,current vegetation coverage is improving,likely due to local vegetation restoration projects.The findings deepen the understanding of spatiotemporal changes in vegetation coverage in Yingtan city and hold significant practical value for ecological protection and sustainable development.

Google Earth EngineNDVIspatiotemporal variationtrend analysis

黎澌澄、吴伟成

展开 >

东华理工大学地球科学学院,330013,南昌

Google Earth Engine NDVI 时空变化 趋势分析

2024

江西科学
江西省科学院

江西科学

影响因子:0.286
ISSN:1001-3679
年,卷(期):2024.42(6)