首页|小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别

小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别

扫码查看
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法.首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP 神经网络的不足.本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定.经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过 90%,相对于BP 网络识别准确率以及识别速度均有所提高.
Identifying Damage of Derrick Steel Structure Based on BP Neural Network Optimized with Wavelet Packet and Genetic Algorithm
The damage of a derrick steel structure affects its bearing safety.In order to identify the damage location quickly and accurately,a method for identifying the damage of a derrick steel structure based on the BP neural network optimized with wavelet packet and genetic algorithm is proposed.Firstly,the excellent performance of the wavelet packet that processes non-stationary vibration signals is used to extract the original vibration signal features,and the information that characterizes the damage is obtained.Then,the data set is established through characteristic parameters to train and test the derrick steel structural damage identification method.Combined with the characteristics of the genetic algorithm,the identification method reduces the shortcomings of the traditional BP neural network.The identification method can determine the damage location without comparing the data characteristics before damage.The experimental results show that the accuracy of the derrick steel structural damage identification method is more than 90%,being higher than that of the traditional BP neural network.

derrick steel structuredamagewavelet packetgenetic algorithmBP neural network optimization

韩东颖、田伟、黄岩、朱国庆

展开 >

燕山大学 车辆与能源学院,河北秦皇岛 066004

井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络

国家自然科学基金项目河北省人社厅留学人员科技活动项目

51875500C20190516

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(1)
  • 14