首页|改进灰狼算法在搬运机器人轨迹规划中的应用

改进灰狼算法在搬运机器人轨迹规划中的应用

扫码查看
为提高托盘式搬运机器人的运行稳定性,提出一种基于改进灰狼算法的机器人加速度最优轨迹规划方法.针对灰狼算法局部收敛、寻优性能不足等问题,引入Logistic-Tent混沌映射,优化初始种群;引入差分优化算法,提高全局搜索能力;引入淘汰进化机制,优化种群结构,从而全面提升优化性能.仿真结果表明,对比标准灰狼算法和粒子群算法,改进灰狼算法在不同类型的测试函数中具有更好的收敛速度和算法精度;在搬运机器人轨迹规划的应用中,经过该算法优化后的机器人最大关节角加速度下降了 44.11%,大幅提高了运行稳定性.
Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot
In order to improve the running stability of the pallet handling robot,an optimal trajectory planning method for robot acceleration based on the improved gray wolf algorithm is proposed.Aiming at the problems of local convergence and insufficient optimization performance of gray wolf algorithm,the Logistic-Tent chaotic map is introduced to optimize the initial population;the differential optimization algorithm is introduced to improve the global search ability;the elimination evolution mechanism is introduced to optimize the population structure and improve the optimization performance in all-round way.Compared with the standard gray wolf algorithm and the particle swarm algorithm,simulation results show that improved gray wolf algorithm has better convergence speed and algorithm accuracy in different types of test functions.In the application of the trajectory planning of the handling robot,after the optimization of the algorithm,the maximum joint angular acceleration of the robot is reduced by 44.11%,which greatly improves the running stability.

handling robottrajectory planningaccelerationgray wolf algorithm

张攀、刘雨晗、张威

展开 >

中国民航大学航空工程学院,天津 300300

民航航空公司人工智能重点实验室,广州 510470

中国民航大学安全科学与工程学院,天津 300300

中国民航航空地面特种设备研究基地,天津 300300

展开 >

搬运机器人 轨迹规划 加速度 灰狼算法

国家自然科学基金-中国民用航空总局联合资助重点项目中央高校基本科研业务费专项天津市研究生科研创新项目

U203320831220230182021YJSS122

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(3)
  • 20