首页|多孔质静压轴承静态特性预测研究

多孔质静压轴承静态特性预测研究

扫码查看
在多孔质静压轴承设计中,轴承设计参数是影响其静动态特性的关键因素之一,通常情况下,要得到合适的轴承设计参数,需要多次重复建模和仿真,且由于轴承结构复杂,建模难度大,仿真时间长,严重影响了轴承的设计效率.本文构建了一种基于遗传算法(Genetic algorithm,GA)优化反向传播(Back propagation,BP)神经网络的轴承静态特性预测模型,采用拉丁超立方抽样方法在轴承参数设计空间内采样,并进行Fluent流体仿真,将仿真数据用于GA-BP神经网络模型的训练与测试,实现了对设计空间内任意设计参数下的多孔质静压轴承静态特性的预测.研究结果表明,训练出的GA-BP神经网络模型能够准确预测多孔质静压轴承的静态特性,预测精度在 95%以上,对多孔质静压轴承的快速设计和参数优化具有重要意义.
Study on Static Characteristics Prediction of Porous Hydrostatic Bearing
In the design of porous hydrostatic bearings,bearing's design parameter is one of the key factors affecting its static and dynamic characteristics.Normally,several repetitions of modeling and simulation are required to obtain suitable bearing design parameters,and due to the complex bearing structure makes modeling difficult and simulation time long,which seriously affects the efficiency of bearing design.In this paper,a bearing static characteristic prediction model based on genetic algorithm(GA)optimized BP(Back Propagation)neural network is constructed,Latin hypercube sampling method is used to sample the bearing parameter design space,and perform Fluent fluid simulation.The data is used for the training and testing of the GA-BP neural network model to realize the prediction of static characteristics of porous hydrostatic bearing under any design parameters in the design space.The research results show that the trained GA-BP neural network model can accurately predict the static characteristics of porous hydrostatic bearings with a prediction accuracy of over 95%,which is great significance for the rapid design and parameter optimization of porous hydrostatic bearings.

porous hydrostatic bearingstatic characteristicGA-BP neural networklatin hypercube samplingprediction

闫如忠、石俊伟、马晓建、安星宇

展开 >

东华大学机械工程学院,上海 201620

纺织装备教育部工程研究中心,上海 201620

多孔质静压轴承 静态特性 GA-BP神经网络 拉丁超立方抽样 预测

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(3)
  • 15