首页|对抗神经网络在轴承故障诊断中的应用

对抗神经网络在轴承故障诊断中的应用

扫码查看
针对条件对抗神经网络(CGAN)只能进行真假不能进行分类判别和半监督对抗神经网络(SGAN)需要同时进行分类和真假判别的缺点,提出了一种改进对抗神经网络CSGAN模型,并给出了具体设计.该对抗网络的生成器G以CGAN为基础,由多层感知机(MLP)构成;判别器D以SGAN为基础,由卷积神经网络(CNN)构成.基于CSGAN,还提出了一种二维对抗神经网络轴承故障诊断方法,该方法首先将原始故障信号归一化到[-1,1]区间,然后利用一个滑窗从归一化数据中截取1024 长度的数据,并转换构成32×32 尺寸的二维矩阵作为CSGAN的输入.经多个公开数据集验证表明,这一诊断方法在不同样本比例的情况下都能有效提高判别器的诊断精度,具有良好的适用性.
Application of Generative Adversarial Nets in Bearing Fault Diagnosis
Aiming at the problems that conditional generative adversarial nets(CGAN)can only judge truth or false and not judge multiple classification,and semi-supervised generative adversarial nets(SGAN)needs to discriminate multiple classification and judge truth and false simultaneously,an improved generative adversarial nets called conditional semi-supervised generative adversarial nets(CSGAN)is proposed in this paper,and its specific design is also given.The generator of the CSGAN is based on CGAN and composed of multi-layer perceptron(MLP),and the discriminator of the CSGAN is based on SGAN and consists of convolutional neural networks(CNN).Based on CSGAN,a 2-D GAN method for bearing fault diagnosis is proposed.Firstly,the original fault signals are normalized to the interval[-1,1],and then a sliding window is used to intercept 1024 length data from the normalized data,which is converted into a 2-D matrix with a size of 32×32 as the input of CSGAN.The validation of experiments on several public data sets shows that this method can effectively improve the diagnostic accuracy of the discriminator under different sample proportions and has good applicability.

GANCGANSGANbearing fault diagnosis

樊星男、刘晓娟

展开 >

太原学院 机电与车辆工程系,太原 030032

太原航空仪表有限公司,太原 030006

对抗神经网络 条件对抗神经网络 半监督对抗神经网络 轴承故障诊断

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(4)
  • 15