首页|Pareto排序遗传算法及响应面优化在纯电车电池壳体参数设计的工程应用

Pareto排序遗传算法及响应面优化在纯电车电池壳体参数设计的工程应用

扫码查看
为解决三元锂电池壳厚重与应力集中的问题.本文利用拉丁超立方法对变密度拓扑优化后参数抽样,利用了Pareto排序多目标遗传算法,选择应力等作为目标函数进行迭代计算.本文利用克里格空间插值法得到各响应图谱以及初步预测的优化方案.基于上述结果利用Design-Expert建立了 62 组响应面数学模型,计算所得帕累托最优为 70%,p-value≤0.0001,证明响应面模型的准确性,经仿真计算优化后的结构较原模型各方面性能都有所提升,具有较好的可靠性.
Engineering Application of Pareto Sorting Genetic Algorithm in Parameter Design of Battery Case of Pure Electric Car
To solve the problems of massive and stress concentration of ternary lithium battery case.The parameters after the variable density topology optimization were sampled using the Latin hypercube method,and the Pareto ranking multi-objective genetic algorithm was utilized to select stresses,etc.as the objective function for iterative calculation.The paper used Kriging space interpolation to obtain each response profile and a preliminary predicted optimization scheme.Based on the above results,a 62-group response surface mathematical model was established using Design-Expert,and the calculated Pareto optimum was 70%,with the p-value≤0.000 1.This proves the accuracy of the response surface model,and the performance of the optimized structure after simulation has been improved in all aspects compared to the original model,with better reliability.

pure electric vehiclemulti-objective genetic algorithmresponse surface optimization

高媛媛、刘娜、刘鹏、王成诺

展开 >

山东建筑大学机电工程学院,济南 250101

运输车辆检测、诊断与维修技术交通行业重点实验室,济南 250300

纯电动汽车 多目标遗传算法 响应面优化

山东省高等教育科技计划交通运输行业车辆测试、诊断与维护技术关键实验室开放基金

J18KA006JTZL2004

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(5)