首页|直接快速迭代滤波分解的刀具磨损状态识别方法

直接快速迭代滤波分解的刀具磨损状态识别方法

扫码查看
针对传统特征提取的刀具磨损状态识别不能充分表征振动信号磨损特征导致磨损状态识别精度不高的问题,提出了一种直接快速迭代滤波分解方法(Direct fast iterative filtering decomposition,dFIF)结合黏菌优化支持向量机(Slime mould algorithm-Support vector machine,SMA-SVM)的刀具磨损状态识别方法.首先,通过直接快速迭代滤波分解方法(dFIF)对铣刀振动信号进行分解处理;其次,对分解产生的本征模态函数(Intrinsic mode function,IMF)使用加权稀疏峭度指标(Weighted sparseness kurtosis,WSK)进行计算评分,选择评分高的IMF进行降噪重构;最后,利用黏菌优化支持向量机(SMA-SVM)构建分类优化模型,将重构信号特征通过主成分分析(Principal component analysis,PCA)降维后输入优化模型,进行刀具磨损状态的分类识别.实验结果证明,提出的刀具磨损识别率高达99.8%,相比较于对比实验该方法能够快速、准确的识别铣刀的4种磨损状态,有一定的实践意义和研究价值.
Tool Wear Status Identification Based on Direct Fast Iterative Filter Decomposition
The tool wear status identification with the traditional feature extraction method cannot fully characterize the wear characteristics of vibration signals,thus leading to the low accuracy of wear status identification.Therefore,we propose a tool wear status identification method based on the direct fast iterative filter(dFIF)decomposition method,the Slime mould algorithm and the support vector machine(SMA and SVM).Firstly,the milling tool vibration signal is decomposed with the dFIF.Secondly,the eigen-mode function generated by the decomposition method is calculated and scored using the weighted sparse kurtosis index,and the eigen-mode function with high scores is selected for noise reduction and reconstruction.Finally,a model is constructed using the SMA and SVM.The reconstructed signal features are input into the optimized model after dimensionality reduction with the principal component analysis to classify and identify tool wear status.The experimental results prove that the tool wear status identification rate of the proposed method is as high as 99.8%and that the method can identify the four wear statuses of the milling tool quickly and accurately.

direct fast iterative filter decompositiontool wear identificationsupport vector machineSlime mould algorithm

苗志滨、殷再航、蒙占彬、丛晓红、崔哲

展开 >

北部湾近海海洋工程装备与技术重点实验室,广西钦州 535011

哈尔滨工程大学计算机科学及技术学院,哈尔滨 150001

直接快速迭代滤波分解 刀具磨损识别 支持向量机 黏菌算法

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(12)