首页|采用改进YoloV4算法的连接件识别方法

采用改进YoloV4算法的连接件识别方法

扫码查看
为实现连接件的自动化装配与分拣,提出了一种改进的YoloV4算法用于连接件的识别.首先在YoloV4的基础上,将YoloV4中的主干网络CSP-Darknet53替换为轻量级的GhostNet网络,同时把YoloV4中用到的普通卷积替换成深度可分离卷积来进一步减少参数量,并通过K-means++聚类算法来避免K-means聚类算法中的缺点,生成先验框尺寸.试验结果表明,改进后的YoloV4算法的平均精度值高达100%,识别速度得到大幅提高,参数量较YoloV4减少了 82%,可提高在嵌入式设备的应用范围,为智能制造提供了技术支持.
Connection Recognition Method Using Improved YoloV4 Algorithm
In order to realize the automatic assembly and sorting of connectors,this paper proposes an improved YoloV4 algorithm for connector identification.First,CSP-Darknet53,the backbone network in YoloV4is replacedby a lightweight GhostNet network.At the same time,the ordinary convolution used in YoloV4is also replaced with a deeply separable convolution to further reduce the number of parameters,and K-means++clustering algorithm is used to avoid the shortcomings of K-means clustering algorithm and generate a priori box size.The experimental results show that the average accuracy of the improved YoloV4 algorithm is as high as 100%,the recognition speed is greatly improved,and the number of parameters is reduced by 82%compared with YoloV4,which can improve the application range of embedded devices and provide technical support for intelligent manufacturing.

target recognitionindustrial partsYoloV4GhostNet

李翠明、王龙、徐龙儿、王华

展开 >

兰州理工大学机电工程学院,兰州 730050

目标识别 工业零件 YoLoV4 GhostNet

2024

机械科学与技术
西北工业大学

机械科学与技术

CSTPCD北大核心
影响因子:0.565
ISSN:1003-8728
年,卷(期):2024.43(12)
  • 1