首页|基于博弈理论组合权重的工业机器人可靠性指标分配研究

基于博弈理论组合权重的工业机器人可靠性指标分配研究

扫码查看
针对工业机器人可靠性指标分配存在认知不确定性问题,文中提出了一种基于博弈理论组合权重的工业机器人可靠性指标评估方法.该方法考虑有效数据资料不完整和主观影响因素的不确定性,结合犹豫模糊集与灰色关联理论,将工业机器人影响较大的因素进行细化分析,建立了二层影响因素分配数学模型.首先,分析了一层影响因素之间的关联性,避免了由于独立考虑各指标给计算结果带来偏差;在此基础上引入基于离散正态分布的有序加权(OWA)评价法,避免了个别决策者不公正或者评价不准确的主观因素对决策结果造成的负面影响;最后,采用博弈论的组合赋权思想计算出分配的综合权重,进行可靠性分配,为工业机器人的设计及可靠性评估提供参考依据.
Investigation on reliability index allocation for industrial robot based on combinatorial weighting of game theory
Since the industrial robot's reliability index allocation suffers from cognitive uncertainty,an evaluation method based on combinatorial weighting of game theory is proposed.It combines with the hesitation-fuzzy set and grey correlation theory,a two-layer factor allocation mathematical model is set up,with the incompleteness of valid data and the uncertainty of subjective influencing factors taken into consideration;these factors which have great influence on the industrial robots are refined.Firstly,the correlation between the influencing factors of the first layer is analyzed,so as to avoid the deviation caused by considering each index independently.On this basis,the ordered weighting(OWA)evaluation method based on discrete normal distribution is in-troduced,in order to avoid the negative impact of individual decision maker's unfair or inaccurate subjective factors on the deci-sion results.Finally,the comprehensive weight of distribution is calculated through combinatorial weighting of game theory,and the reliability is allocated.This study provides reference for the design and reliability evaluation of industrial robots.

industrial robotreliability allocationmulti-layer comprehensive factor allocation methodgrey correlationOWAgame theory

白斌、周策、曾省忠、李林、周枫林

展开 >

湖南第一师范学院智能制造学院,湖南长沙 410205

河北工业大学机械工程学院,天津 300401

工业机器人 可靠性分配 多层综合因子分配方法 灰色关联 OWA 博弈理论

国家自然科学基金国家自然科学基金湖南省教育教学改革重点项目长沙市自然科学基金河北省自然科学基金

1210229911972145HNJG-20231328kq2208084E2020202217

2024

机械设计
中国机械工程学会,天津市机械工程学会,天津市机电工业科技信息研究所

机械设计

CSTPCD北大核心
影响因子:0.638
ISSN:1001-2354
年,卷(期):2024.41(5)
  • 17