首页|基于EEMD和LSTM的轴承故障识别模型

基于EEMD和LSTM的轴承故障识别模型

扫码查看
滚动轴承作为列车走行部的核心组成部分,其工作状态直接决定着整个列车的安全性.车辆轴承的异常振动信号多为非平稳非线性信号,针对传统时频分析方法对该类信号处理的局限性,文中提出了 一种基于集合经验模态分解(EEMD)和长短期记忆神经网络(LSTM)的故障识别模型.针对传统HHT中经验模态分解EMD的模态混叠等问题,提出了采用一种改进的集合经验模态分解方法(EEMD),有效地分解原始振动数据,并通过相关系数法剔除趋势项分量,从而更好地识别轴承故障,并有效地预测轴承的故障情况.通过小波阈值法对高频含噪分量去噪,对去噪后的高频分量和低频信息分量进行加权重构,采用Hilbert-Huang变换来优化处理流程,计算出时间-瞬时频率-瞬时能量之间的相互关系.将Hilbert谱输入至长短期记忆神经网络(LSTM)中提取特征,判断车辆轴承的故障模式.文中试验结果表明:该模型可有效实现对轨道车辆轴承振动的特征提取,并对其故障形式给出高置信度的诊断.
Method of identifying bearing fault based on serial EEMD and LSTM
As the core component of the train running part,the working state of the rolling bearing directly determines the safety of the whole train.The abnormal vibration signals of vehicle bearings are mostly non-stationary nonlinear signals.Aiming at the limitation of traditional time-frequency analysis methods,a fault identification model based on ensemble empirical mode de-composition(EEMD)and long short-term memory neural network(LSTM)is proposed in this paper.An improved ensemble em-pirical mode decomposition(EEMD)method is proposed to solve the mode aliasing problem of EMD in traditional HHT.It can decompose the original vibration data effectively and remove the trend component by correlation coefficient method,so as to i-dentify bearing faults better and predict bearing faults effectively.The wavelet threshold method is used to denoise the high fre-quency and low frequency components,and the weighted reconstruction of the high frequency and low frequency information components after denoising is carried out.The Hilbert-Huang transform is used to optimize the processing flow,and the rela-tionship between time,instantaneous frequency and instantaneous energy is calculated.Hilbert spectrum is input into long short-term memory neural network(LSTM)to extract features and judge the fault mode of vehicle bearings.The experimental results show that the model can effectively extract the characteristics of the vibration of rail vehicle bearings and diagnose the fault forms with high confidence.

vehicle bearingfault diagnosisempirical modal decompositionHilbert-Huang transformationlong short-term memorywavelet threshold noise reduction

黄聪、周军晖、董晋明

展开 >

许昌电气职业学院机电工程系,河南许昌 461000

山西工程科技职业大学,山西晋中 030600

车辆轴承 故障诊断 经验模态分解 希尔伯特-黄变换 长短期记忆网络 小波阈值降噪

2024

机械设计
中国机械工程学会,天津市机械工程学会,天津市机电工业科技信息研究所

机械设计

CSTPCD北大核心
影响因子:0.638
ISSN:1001-2354
年,卷(期):2024.41(8)