首页|手过头作业上肢肌肉疲劳状态识别研究

手过头作业上肢肌肉疲劳状态识别研究

扫码查看
为对手过头作业中的上肢肌肉疲劳状态进行有效识别,结合复杂装备的维修任务设计了手过头作业试验.通过采集被试的表面肌电信号(Surface Electromyography,SEMG)和主观疲劳状态及研究SEMG信号的时域、频域、非线性及参数模型特征计算方法,基于支持向量机(Support Vector Machine,SVM)采用核主成分分析(Kernel Principal Component Analysis,KPCA)进行特征降维并对手过头作业的肌肉疲劳状态进行识别.研究结果表明:手过头作业中斜方肌的SEMG贡献率最高;KPCA-SVM对训练集和测试集的疲劳识别率分别为0.998 27和0.832 18,与其他疲劳识别算法相比具有优越性.
Research on fatigue state recognition of upper limb muscles in overhead work
To effectively recognize the state of upper limb muscle fatigue during overhead work,an overhead work experiment was designed in conjunction with complex equipment maintenance tasks.Time-domain,frequency-domain,nonlinear,and paramet-ric modeling characteristics computational method of the SEMG signals were studied through the collection of surface electromyo-graphy(SEMG)signals and subjective fatigue levels.Kernel principal component analysis(KPCA)was employed to perform di-mension reduction and recognization of muscle fatigue status during overhead work.The findings revealed that the trapezius mus-cle exhibited the highest contribution rate in terms of SEMG during overhead tasks.The recognition rates for fatigue using KPCA-SVM were 0.998 27 and 0.832 18 for training set and test set,demonstrating superiority over other fatigue identification algorithms.

ergonomicsoverhead workmuscle fatiguesurface electromyographykernel principal component analysissupport vector machine

杨延璞、余文锋、安为岚、韩钟剑、范昱

展开 >

长安大学道路施工技术与装备教育部重点实验室,陕西西安 710064

中国电子科技集团第二十研究所,陕西西安 710068

人机工效 手过头作业 肌肉疲劳 表面肌电信号 核主成分分析 支持向量机

基础加强计划技术领域基金长安大学中央高校基本科研业务费项目

2021-JCJQ-JJ-1018300102253107

2024

机械设计
中国机械工程学会,天津市机械工程学会,天津市机电工业科技信息研究所

机械设计

CSTPCD北大核心
影响因子:0.638
ISSN:1001-2354
年,卷(期):2024.41(8)