首页|基于SVM的铆接件识别及特征参数研究分析

基于SVM的铆接件识别及特征参数研究分析

Research and Analysis on Recognition and Characteristic Parameters of Riveted Parts Based on SVM

扫码查看
针对武器装备中铆接结构损伤检测的问题,提出了支持向量机(SVM)机器视觉识别方法.首先,采集铆钉图像样本并对其进行图像预处理,提取了铆钉头四个相关特征参数.其次,在小样本条件下,采用SVM算法对铆钉的样本特征进行训练并建立视觉识别模型,分析了特征参数与最终模型之间的关系.最后,将SVM视觉识别方法与Hough变换和独立判断方法进行对比分析.对比结果表明:SVM视觉识别方法较后二者的识别速度更快,识别准确率更高,证明了该方法的可行性和有效性.
In order to solve the problem of Riveting structure damage detection in weapon equipment,support vector machines (SVM) method of computer visual recognition was proposed.First,the image of rivet was collected and image preprocessing was carried out to extract the four relevant characteristic parameters.Secondly,under the condition of small sample,the SVM algorithm was used to train and establish a visual recognition model,and the relationship between the characteristic parameters and the final model was analyzed.Finally,the SVM vision recognition method,Hough transform method and independent judgment method were compared and analyzed.The comparison results showed that the recognition rate of the SVM vision recognition method is faster and the recognition accuracy is higher,and the feasibility and effectiveness of the proposed method was proved.

Riveted PartsSVMComputer VisionRecognition

陈健飞、蒋刚、杨剑锋、李自胜

展开 >

西南科技大学制造科学与工程学院,四川绵阳621000

西南科技大学制造过程测试技术教育部重点实验室,四川绵阳621000

铆接件 SVM 计算机视觉 识别

国家自然科学基金中国工程物理研究院联合基金国家重大科学仪器设备开发专项西南科技大学研究生创新基金资助项目

111760272012YQ13022614ycxjj0118

2017

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2017.(1)
  • 1
  • 8