为了解决传统深度自动编码器存在的过度拟合以及泛化能力弱等问题,提出一种基于深度Laplacian正则化自动编码器的不平衡旋转机械故障诊断.首先将采集到的振动信号输入到构造的深度Laplacian正则化自动编码器模型中进行逐层特征提取,将Laplacian正则化项引入到深度自动编码器的原始目标函数中,以平滑故障诊断模型中数据的流形结构,从而提高故障诊断框架的泛化性能,然后利用BP分类器对提取的深层判别敏感特征流进行故障诊断.最后通过CWRU故障数据集实验结果证明提出的方法能够实现旋转机械平衡与不平衡数据集的精确故障诊断没并且具有较好的泛化性能.