首页|改进的SSD生活垃圾检测算法

改进的SSD生活垃圾检测算法

扫码查看
针对目前垃圾资源化利用的问题,为提升垃圾分拣工作的速率,并减少人工成本,通过对目标检测算法SSD(Sin-gle Shot Multibox Detector)的研究与分析,提出了基于改进的SSD垃圾分类算法,对基础特征提取网络VGG16参数量大、检测性能低等问题,使用DenseNet的网络结构,加深网络层数,并使用通道叠加的方式加强信息传递,从特征复用的角度上加强网络性能;对原网络对于小目标检测能力弱的问题,利用FPN结构加强特征图中包含的语义信息,提高对小目标的检测能力;对原损失函数在模型评估时的不等价情况,引入GIoU损失提高定位精度.这里的算法在PASCALVOC数据集与自己制作的生活垃圾检测数据集上测试,其中在PASCAL VOC数据集上的检测结果显示,这里的算法相比于SSD300和SSD512分别有1.7%和1.9%的提升;在生活垃圾检测数据集上,分别有2.1%和3%的提升.
Improved SSD Domestic Garbage Detection Algorithm

Deep LearningTarget DetectionSSDFeature FusionNeural NetworksGarbage Classification

李博威、侯明、李擎、徐文龙

展开 >

北京信息科技大学自动化学院,北京100192

深度学习 目标检测 SSD 特征融合 神经网络 垃圾分类

国家自然科学基金

61971048

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.391(9)
  • 3