首页|TensorFlow监测液压缸内部微小泄漏量的研究方法

TensorFlow监测液压缸内部微小泄漏量的研究方法

扫码查看
现阶段普遍采用的内泄漏检测方法,实际上并没有做到液压缸微小内泄漏量的监测.为监测液压缸微小内泄漏量,提出了利用TensorFlow的研究方法.其中最大的创新点是设计了一种结构性的液压油传感器,并采用TensorFlow构建网络实施监测,将复杂的应变—微小泄漏量关系简化至可直接读取.主要内容是利用液压油传感器,提供给微小内泄漏一个缓冲部位,减少压力影响,同时连接液压油收集部位和PC端,构成整个监测系统对数据进行采集和处理,最后再利用TensorFlow实现无需人工的液压缸内部微小泄漏量监测.结果表明,结合液压油传感器和TensorFlow,提取原始数据并处理最终数据,可以监测液压缸微小内泄漏量,为液压系统的微小内泄漏量的监测提供了研究思路.
Research Method of TensorFlow Monitoring Micro Leakage in Hydraulic Cylinder
The internal leakage detection method commonly used at present stage does not actually monitor the micro internal leakage of the hydraulic cylinder.In order to monitor the micro leakage of hydraulic cylinder,the research method using Tensor-Flow was proposed.The biggest innovation is the design of a structural hydraulic oil sensor,and the use of TensorFlow network to implement monitoring,the complex strain-small leakage relationship can be simplified to direct reading.The main content is to use hydraulic oil sensor to provide a buffer part for micro internal leakage to reduce pressure influence.Meanwhile,the hydraulic oil collection part and PC end are connected to constitute the whole monitoring system for data collection and processing.Finally,TensorFlow is used to realize the monitoring of micro internal leakage of hydraulic cylinder without manual work.The results show that,combined with the hydraulic oil sensor and TensorFlow,the original data can be extracted and the final data can be processed to monitor the micro leakage in the hydraulic cylinder,which provides a research idea for the monitoring of the micro leakage in the hydraulic system.

Small Leakage AmountThe Hydraulic CylinderHydraulic Oil SensorTensorFlow

郭媛、邓晨浩、曾良才、熊戈

展开 >

武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉 430081

武汉科技大学机械传动与制造工程湖北省重点实验室,湖北 武汉 430081

微小泄漏量 液压缸 液压油传感器 TensorFlow

国家自然科学基金资助项目

51975425

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.394(12)
  • 8