首页|航空发动机的IGWO-KELM故障诊断方法

航空发动机的IGWO-KELM故障诊断方法

扫码查看
为提高航空发动机滑油系统的故障诊断有效性,提出了一种改进的灰狼算法优化核极限学习机(IGWO-KELM)的航空发动机故障诊断方法,对航空发动机进行了故障诊断技术研究.首先对航空发动机滑油系统的参数数据进行预处理,利用核独立分量分析(KICA)将数据映射到核空间,消除原始特征向量间的相关性,并提取特征系数矩阵;其次,由提取的特征矩阵创建KELM故障模型,为减少人为调节网络参数的随机性对诊断结果造成的影响,采用IGWO算法优化KELM的网络参数,并创建IGWO-KELM故障诊断模型;最后,对所创建的IGWO-KELM故障诊断模型进行了试验验证.结果表明,所提出的IGWO优化KELM的故障诊断方法能有效提高航空发动机故障诊断准确率,诊断准确率达96%,具有很好的应用前景.
IGWO-KELM Fault Diagnosis Method of Aero-Engine
In order to improve the effectiveness of fault diagnosis of aero-engine lubricating oil system,this paper studies the fault diagnosis technology of aero-engine and proposes an improved grey Wolf algorithm to optimize the nuclear limit learning ma-chine.Firstly,the parameter data of aeroengine lubricating oil system is preprocessed,and the kernel space is mapped by kernel independent component analysis to eliminate the correlation between the original feature vectors and extract the feature coefficient matrix.Secondly,the KELM fault model was created from the extracted feature matrix.In order to reduce the impact of random-ness of network parameters artificially adjusted on the diagnosis results,IGWO algorithm was used to optimize the network pa-rameters of KELM and create the fault diagnosis model.Finally,the IGWO-KELM fault diagnosis model is verified by experi-ments.The results show that the proposed IGWO optimized KELM fault diagnosis method can effectively improve the accuracy of aero-engine fault diagnosis.The diagnostic accuracy reaches 96%,which has a good application prospect.

Aero-EngineKernel Independent Component AnalysisKernel Extreme Learning MachineImproved Grey Wolf OptimizerFault Diagnosis

崔建国、李勇、王景霖、于明月

展开 >

沈阳航空航天大学自动化学院,辽宁 沈阳 110136

故障诊断与健康管理技术航空科技重点实验室,上海 201601

航空发动机 核独立分量分析 核极限学习机 改进灰狼算法 故障诊断

国家自然科学基金航空科学基金航空科学基金辽宁省教育厅基金

5160530920193305400220163354004JYT2020021

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.394(12)
  • 7