首页|改进鱼群算法在滚动轴承故障诊断诊中的运用

改进鱼群算法在滚动轴承故障诊断诊中的运用

扫码查看
针对滚动轴承故障振动信号微弱难以识别的问题,提出采用改进人工鱼群算法优化的神经网络诊断方法.首先,引入速度动态参数对人工鱼群算法固定搜索步长进行改进,并用改进人工鱼群算法优化神经网络.其次,采用最小二乘趋势分析消除实验室采集到的滚动轴承内环、外环和滚珠三种故障振动信号的趋势项;并根据时频域特征参数的变化趋势筛选出均值、标准差和波峰因子这三个能够明显反映不同故障类型的特征参量.最后,将遗传算法、粒子群算法等优化的神经网络作为对比算法用于滚动轴承故障诊断.仿真结果表明:这里提出的方法相比对比算法,20次平均诊断准确率高、误差小、稳定性高.
Application of Improved Fish Swarm Algorithm in Fault Diagnosis of Rolling Bearing
Aiming at the problem that the vibration signal of rolling bearing fault is weak and difficult to identify,a neural net-work diagnosis method using an improved artificial fish swarm algorithm optimization is proposed.Firstly,the speed dynamic pa-rameters are introduced to improve the fixed search step length of the artificial fish swarm algorithm,and the improved artificial fish swarm algorithm is used to optimize the neural network.Secondly,the least-squares trend analysis is used to eliminate the trend terms of the three kinds of fault vibration signals of rolling bearing inner ring,outer ring and ball.And the mean value,standard deviation and crest factor are selected according to the change trend of the characteristic parameters in the time-frequen-cy domain.These three can obviously reflect the characteristic parameters of different fault types.Finally,the genetic algorithm,particle swarm optimization and other optimized neural networks are used as comparison algorithms for rolling bearing fault diag-nosis.The simulation results show that the proposed in this paper has higher average diagnosis accuracy,less error and higher sta-bility than the comparison algorithm.

Rolling BearingFault DiagnosisArtificial Fish Swarm AlgorithmNeural NetworkCharacteristic Pa-rameters

谢中敏、胡超

展开 >

江苏航空职业技术学院航空工程学院,江苏 镇江 212134

滚动轴承 故障诊断 人工鱼群算法 神经网络 特征参数

镇江市科技计划2021年度院级课题资助项目

NY2019017JATC21010103

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.394(12)
  • 7