首页|深度级联CNN下机械手故障残差阈值超范围判定

深度级联CNN下机械手故障残差阈值超范围判定

扫码查看
全驱动机械手的结构采用PC机为上位机,大量的串联结构导致精准传动难度较大,适应负载能力较差.相比之下,欠驱动机械手结构更简单,可实现多于控制输入的自由度,但是,当连杆式欠驱动机械手出现故障时会产生自振,故障特征难以获取,信号残差阈值超出范围时无法精准判定.为此,研究一种连杆式欠驱动机械手故障残差阈值超范围判定方法.构建深度级联卷积神经网络,提取每组故障信号深层意义特征,计算故障信号残差值.利用连接层降维转换,使信号归一化处理.通过插值层提取机械手形状和点级别,输出故障信号预测标签.设计深度级联卷积神经网络信号观测器,跟随机械手运行实时更新数据,设置特征点残差阈值,以此为依据判定该特征点是否为故障点.实验测试结果证明:研究方法能够精准根据故障残差信号的输出判断连杆式驱动机械手的故障位置,且收敛速度较快、误差较小.
Fault Residual Threshold Over-Range Determination of Manipulator Under Deep Cascade CNN
The structure of the fully driven manipulator adopts PCas the upper computer.A large number of series structures lead to great difficulty in accurate transmission and poor load adaptability.In contrast,the underactuated manipulator has a simpler structure and can achieve more degrees of freedom than the control input.However,when the link type driven manipulator fails,it will produce natural vibration,and it is difficult to obtain the characteristic points,and the signal residual threshold cannot be ac-curately determined beyond the range.Therefore,a method to determine the fault residual error threshold of link type underactuat-ed manipulator is studied.The deep cascade convolution neural network is constructed to extract the deep meaning features of each group of fault signals and calculate the residual value of fault signals.The signal is normalized by the dimension reduction conver-sion of the connection layer.The shape and point level of the manipulator are extracted through the interpolation layer,and the fault signal prediction label is output.A deep cascade convolutional neural network signal observer is designed to update the data in real time following the operation of the manipulator,and the residual threshold of the feature point is set to determine whether the feature point is a fault point.The experimental results show that the research method can accurately judge the fault position of the link driven manipulator according to the output of the fault residual signal,and the convergence speed is fast and the error is small.

Deep Cascade Convolutional Neural NetworkManipulatorFault DiagnosisResidual ThresholdOb-serverCharacteristic Points

师晓利、张楠

展开 >

郑州西亚斯学院电子信息工程学院,河南 郑州 451150

山西大同大学机电工程学院,山西 大同 037003

深度级联卷积神经网络 机械手 故障诊断 残差阈值 观测器 特征点

河南省科技厅科技攻关项目

212102210406

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.394(12)
  • 9