首页|SA-BP神经网络检测镀镍铜线圈表面粗糙度

SA-BP神经网络检测镀镍铜线圈表面粗糙度

扫码查看
为了高效地检测镀镍矩形铜线圈的表面粗糙度,通过由工业相机、显微镜头、点光源等设备构成的硬件系统获取线圈表面图像,采用基于灰度共生矩阵的视觉检测方式,根据图像处理技术提取8个基于灰度共生矩阵的纹理特征参数,结合实际粗糙度值建立实验数据库,分析了特征参数与实际粗糙度值的变化规律;针对BP神经网络容易使权值与阈值陷入局部最优解,导致检测结果不准确等问题,采用SA算法优化了BP神经网络的初始权值与阈值,构建了SA-BP神经网络检测模型;根据训练结果,训练MSE由BP模型的0.000139降到0.000023,迭代次数降低22,说明SA-BP模型拥有更快的收敛速度与更优的网络模型;根据检测结果,检测最大误差幅度由BP模型的0.21μm降到了0.13μm,相对误差均值由5.41%降到3.45%,说明SA-BP模型具有更高的检测稳定性与准确性.
Detection of Surface Roughness of Nickel-Plated Copper Coil by SA-BP Neural Network
In order to effectively detect the surface roughness of the nickel plating rectangular copper coils,by industrial camera,microscope lens,point light source equipment such as composition of the surface of the hardware system for coil image,visual in-spection method based on gray level co-occurrence matrix,based on image processing techniques to extract eight based on gray level co-occurrence matrix feature parameters,combined with the actual roughness values to establish the experimental data-base,analyses the change rules of characteristic parameters and the actual roughness value;Abstract:BP neural network is easy to make weights and thresholds fall into local optimal solution,resulting in inaccurate detection results,and so on.SA algorithm is used to optimize the initial weights and thresholds of BP neural network,and a detection model of SA-BP neural network is built.According to the training results,the training MSE decreased from 0.000139 of BP model to 0.000023,and the number of iterations decreased by 22,indicating that SA-BP model has faster convergence speed and better network model.According to the detection results,the maximum detection error range decreased from 0.21μm of BP model to 0.13μm,and the relative error mean decreased from 5.41% to 3.45%,indicating that SA-BP model has higher detection stability and accuracy.

Copper Plated Nickel CoilGLCMRoughnessSimulated Annealing AlgorithmBP Neural Network

翁卫兵、樊祉良、吴坚、陈灼

展开 >

浙江科技学院机械与能源工程学院,浙江 杭州 310012

镀镍铜线圈 灰度共生矩阵 粗糙度 模拟退火算法 BP神经网络

国家重点研发计划

2017YFC0806303

2023

机械设计与制造
辽宁省机械研究院

机械设计与制造

CSTPCD北大核心
影响因子:0.511
ISSN:1001-3997
年,卷(期):2023.394(12)
  • 8